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Examples of optional readings

 Murphy 17.4.4 & 20.2
 Bishop 8.4.5 & 13.2.5
 MacKay 26.3 



Outline

1. HMMs continued

2. Graphical models continued:
 Max-sum algorithm

 A few points moving forward

3. Course evaluations (15 min)



1. HMMs continued

                                 (Notes from Lecture 20)

Three problems and three solutions:
1.  Computing probabilities of observed sequences: Forward-backward algorithm
2.  Learning of parameters: Baum-Welch algorithm
3.  Inference of hidden state sequences: Viterbi algorithm



2. Graphical models cont’d from Lecture 21

Recall the sum-product algorithm’s messages:



From sum-product to max-product

Whereas, the goal of the max-product algorithm is to find

                                     and especially



From sum-product to max-product

Going from the forward-backward algorithm to the Viterbi 
algorithm was a matter of replacing summations with maxes.

This is what happens going from sum-product to max-product.

               Baum-Welch = HMM EM
                          Viterbi = HMM max-product (akin to max-sum...)
      Forward-backward = HMM sum-product



From max-product to max-sum
 It’s often convenient to work with the logarithm of the joint 

distribution 
 It’s very easy to introduce this in our max-product work, 

because the max operator and logarithm function can be 
interchanged:

 Some authors use the terms ‘max-product’ and ‘max-sum’ 
almost interchangeably because the only difference is taking 
the logarithm

 Replacing maxes with mins gives the min-sum algorithm



Max-sum algorithm
The new messages are:

When finished:

                                                 and 



The Viterbi algorithm

The max-sum messages in an HMM:

As with the sum-product algorithm
from last week, run the messages
up and down the factor graph 
once, and you are finished.



Handling ties in max-sum
               Is one moving object 
    more worthwhile to observe
                          than another?

                                         Is one colour better than another?

                                 

 



Handling ties in max-sum
Introduce preferences γ

mj  
many orders of magnitude lower than 

the function of interest, via a random number generator.

The mth variable node will have preference γ
mj

 for the jth state.

                                     

                                 

 



Comparing algorithms: max-sum vs Ising model
In Lecture 17, to solve the Ising model we had used something 
called iterated conditional modes (ICM), consisting of a very 
primitive form of message: the new state of a node.

Whereas, max-sum is more communicative: “If you select state 
x, then the highest score for me and others is...”

ICM isn’t guaranteed to find a global maxima on trees.

                                     

                                 

 



Recall the Ising model

 xi : original image

 yi : noisy image

where



Energy function

                                  bias       neighbours    observed

 The relative values of h, β, and η control these three 
effects

 What are the maximal cliques in an Ising model?



Solving the Ising model

 Select 
 Initialize x to y
Until convergence:
       for each xi :
              xi ← argmin E(xi, yi)
                    



   Tutorial 10 and max-product

  
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Converting among types of graphical models

   P(...)  or
Bayesian Net

Factor graph

MRF



A B
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E

D

F

A B

C
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F

Converting BNs to MRFs

Moralization

All co-parents must be 
married (nodes with a 
child in common must 
be connected to one 
another)



Two protocols for message passing
 Serial (our topic so far): 

 Messages travel from the leaves to the root and back

 

 Parallel (new topic):

1.  Initialize all messages to a vector of all 1’s

2.  In parallel, each node computes its message

3.  Repeating #2 for d iterations leads to convergence 

 (d is the diameter of the graph, i.e. the maximum distance between

  any two nodes)



Tutorial 10: the serial protocol

  



Example of the parallel protocol

 Homework: try it for a small graph and confirm it matches
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