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1. HMMs continued
2. Graphical models continued:

* Max-sum algorithm
* A few points moving forward

3. Course evaluations (15 min)




1. HMMs continued

and three solutions:
1. Computing probabilities of observed sequences: Forward-backward algorithm
2. Learning of parameters: Baum-Welch algorithm
3. Inference of hidden state sequences: Viterbi algorithm «—

(Notes from Lecture 20)



2. Graphical models cont’d from Lecture 21

Recall the sum-product algorithm’s messages:

Factor-to-variable messages:
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Variable-to-factor messages:
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From sum-product to max-product

The sum-product algorithm computes probabilities for a subset of the
variables of a factor graph, e.g. P(a, b, c, d)

Marginal distributions, e.g. P(b)
Joint distributions of a subset of variables, €.9. P(a,b)

Conditional distributions ( often the posterior distributions of our interest ) , e.g. P(a,c | d)
= P(a,c,d) / P(d)

Whereas, the goal of the max-product algorithm is to find

p(x™*) = maxp(x) and especially x™" = argmaxp(x)
b

x



From sum-product to max-product

Going from the forward-backward algorithm to the Viterbi
algorithm was a matter of replacing summations with maxes.

This is what happens going from sum-product to max-product.

Baum-Welch = HMM EM
Viterbi = HMM max-product (akin to max-sum...)
Forward-backward = HMM sum-product



From max-product to max-sum

* |t's often convenient to work with the logarithm of the joint
distribution
* [t's very easy to introduce this in our max-product work,
because the max operator and logarithm function can be
iInterchanged: % ,
In (1‘1‘151.}; p{}{j) — max In p(x)

x b

* Some authors use the terms ‘max-product’ and ‘max-sum’
almost interchangeably because the only difference is taking
the logarithm

* Replacing maxes with mins gives the min-sum algorithm



Max-sum algorithm

The new messages are:

pi—z(x) = max |Inf(x,z1,...,2
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The Viterbi algorithm

The max-sum messages in an HMM:
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As with the sum-product algorithm
from last week, run the messages
up and down the factor graph
once, and you are finished.




Handling ties in max-sum

Is one moving object 20l
more worthwhile to observe ol
than another? 8 20}

y (me
I
=)

Is one colour better than another?




Handling ties in max-sum

Introduce preferences V,,; many orders of magnitude lower than
the function of interest, via a random number generator.

The mth variable node will have preference Vo for the jth state.




Comparing algorithms: max-sum vs Ising model

In Lecture 17, to solve the Ising model we had used something
called iterated conditional modes (ICM), consisting of a very
primitive form of message: the new state of a node.

Whereas, max-sum is more communicative: “If you select state
x, then the highest score for me and others is...”

ICM isn’t guaranteed to find a global maxima on trees.



Recall the Ising model

e X, : original image

e V.. NOISy Image y‘*‘. { .

= s
1
P(x,y) = - exp{—E(x,y); jj P
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Energy function

E[}:__}r;}:hZIE— ﬁZI i —UZ Ll

{i.7}

bias neighbours observed

e The relative values of h, B, and n control these three
effects

e \What are the maximal cliques in an Ising model?



Solving the Ising model

e Select s=10.n=21andh =0
e Initialize x to y

e Until convergence:

for each x::
X, < argmin E(x, y)




Tutorial 10 and max-product
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Example of the sum product algorithm
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Converting among types of graphical models
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Converting BNs to MRFs

Moralizatio>

All co-parents must be
married (nodes with a
child in common must
be connected to one
another)




Two protocols for message passing

* Serial (our topic so far):

* Messages travel from the leaves to the root and back

* Parallel (new topic):
1. Initialize all messages to a vector of all 1's
2. In parallel, each node computes its message

3. Repeating #2 for d iterations leads to convergence
(d is the diameter of the graph, i.e. the maximum distance between

any two nodes)



Tutorial 10: the serial protocol

©

b
fa@)*

2l

f-"ﬂ—ﬁfl{ﬂ'j =1 l.T
pdsfs(d) = [111_T
i -sb(b) = [3,3]"
s p2(b) = [3,3]"
ff,—selc) = [15,4.5)F
fes s (€) = [15,4.5)7

i1, e () = [58.5,58.5)T

He—s fa (E:] - [1: llT

tfsale) = [58.5,58.5]T

= [E': ﬂ]T
— [E—, E’]T
= [24,15]T
24, 15]T
39, 78]7

fis—e(C)
fe— f2(C)
fr, (D)
po— f, (b) =
fala) =

Example of the sum product algorithm
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Example of the parallel protocol

* Homework: try it for a small graph and confirm it matches
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