
ECE521 Lecture 23
6 April 2017

Belief propagation in cyclic graphs

Mark Ebden
(with thanks to Andrew Rosenberg, Stephen Roberts and others)

Outline

 Lecture 22 continued:
● Max-sum algorithm
● The parallel protocol for belief propagation
● Course evaluations

 Belief propagation in cyclic graphs:
 Junction-tree algorithm

 Loopy belief propagation

Belief propagation in cyclic graphs

 The message-passing we have seen so far is limited to
trees (maximum one path between any two nodes)

 We can work on non-trees as well, with some care
 As before, the key is to form a graph which has the same

global properties as the original problem, while allowing
local representation to avoid brute-force inference

 We look first at the junction-tree algorithm

Belief propagation in cyclic graphs

Examples of optional readings:

 MacKay 26.4
 Bishop 8.4.7
 Murphy 20.4

The junction-tree algorithm

1. Construct the CPTs (conditional probability tables)
2. Convert the Bayesian network to a moralized MRF
3. Triangulate the MRF
4. Identify and link up cliques, to construct the junction tree
5. Propagate probabilities

Each step can be done in polynomial time
(even #3, although finding its optimal solution is NP hard)

Junction-tree algorithm

Steps 2 to 4 are known as compiling the graph:

 Moralization Triangulation Identifying/joining cliques

Triangulation

 There can be many choices for which edges to introduce
 Any triangulation is acceptable in this course

Triangulation = adding links to break up cycles of 4 or more nodes

Triangulation examples

Cliques

 Order the cliques by their highest vertices in the original DAG

 No node can be a descendant of a node in a lower clique

 A junction tree starts with the lowest clique, and you add
progressively the predecessor clique which
shares the largest number of common nodes:

Adding separators

 Order the cliques by their highest vertices in the original DAG

 No node can be a descendant of a node in a lower clique

 A junction tree starts with the lowest clique, and you add
progressively the predecessor clique which
shares the largest number of common nodes:

b,c c,d

 clique separator

● Aim for a junction tree with the highest separator cardinality (4 > 3 in the above)

 Junction trees must satisfy the Running Intersection Property:
On the path connecting any two cliques, each in-between clique must include
those two cliques’ shared nodes

Message passing in a Junction Tree

 Letting C(T) be the cliques on the junction tree, and S(T) be the
separators, our model is:

where ψ
c
(x

c
) and ψ

s
(x

s
) are the clique potentials and separator

potentials, respectively

 For a separator between cliques i and j, we also use the notation
ψ

s
(x

s
) = ψ

ij
(S

ij
), between clique potentials ψ

i
(C

i
) and ψ

j
(C

j
)

 We use asterisks to indicate when a potential has been updated,
e.g. ψ

ij
*

(S

ij
), ψ

ij
**

(S

ij
)

Message passing in a Junction Tree

1.Initialize all separators to 1, and all ψ
c
(x

c
) to functions as we did for

 factor graphs

2.Starting at the bottom-most separator in the junction tree, alternate
 between the following two steps, climbing to the root:

3.On the way down, alternate between these two steps:

Loopy belief propagation

 Treewidth is a measurement related to the size of the
largest clique

 If the treewidth is high, the junction-tree algorithm will not
be quick

 An alternative is LBP: return to the factor graph approach
and try applying the parallel protocol (see Lecture 22),
overlooking the fact that we don’t have a tree!

 LBP gives no guarantee of convergence, but for many
graphs it does converge

Questions (The three red ones are to be discussed during the lecture.)

A company you outsource your coding to has two programmers: Joab, handling 80% of projects, and someone else.
For each function defined in the resulting code, there is a 70% chance it was named descriptively if Joab was the
author; otherwise the chance is 90%.

1. You commission some work and find that the first two functions, GMMfit and Estep, were named descriptively.

(a) Calculate the probability that Joab was the programmer.
(b) Draw a Bayesian network with probability tables for binary variables F(irst), S(econd), and J(oab).

2. You commission a second piece of work.

(a) Use the max-sum algorithm to guess simply (yes or no) whether the first function will be named descriptively.
(b) Use the sum-product algorithm to compute the probability that the first two functions will be named descriptively.

3. Suppose now that if the nth function isn’t named descriptively, the chance that the (n+1)st function will be named
descriptively is halved. You commission a third piece of work and are interested in the probability P(T) that the third
function will be named descriptively.

(a) Draw the new Bayesian network with four binary variables and their probability tables. Don’t calculate P(T).
(b) Convert this Bayesian network to a junction tree. Use it to calculate P(T).

 (c) Draw a factor graph which, using loopy belief propagation, might be able to calculate P(T). Don’t calculate it.

Outline

 Lecture 22 continued:
● Max-sum algorithm
● The parallel protocol for belief propagation
● Course evaluations

 Belief propagation in cyclic graphs:
 Junction-tree algorithm

 Loopy belief propagation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

