
ECE521 lecture 4: 
19 January 2017 

Optimization, MLE, 
regularization



First four lectures

• Lectures 1 and 2:
– Intro to ML
– Probability review
– Types of loss functions and algorithms

• Lecture 3: 
– KNN
– Convexity in optimization

• Lecture 4: 
– Momentum and SGD in optimization
– MLE
– Regularization



Today’s lecture

• Tricks for gradient descent

– Momentum

– SGD

• MLE

– Univariate Normal distribution

– Multivariate Normal distribution

– Mixture of Normal distributions

• Regularization



•

Momentum



• Intuition: instead of zigzagging around the weight 
space using the latest gradient, we would like to 
“accelerate” learning by accumulating some 
“velocity/momentum” using the past gradients

• Add a momentum term to the update equation:

• is the momentum coefficient on how 
much velocity we pick up.           0.9 works well in 
general

Momentum



• Imagine a ball on the loss function surface. The 
location of the ball in the horizontal plane represents 
the weight vector

• The ball starts off by following the gradient, but once it 
has velocity, it no longer does steepest descent

• Its momentum tends to keep it going towards the 
previous direction

Momentum

weight space

loss



• One extension is Nesterov’s momentum

• Intuition: classical momentum method often has an 
undesirable overshoot behavior. This can be reduced 
by “looking ahead”. The gradient is computed 
assuming we take one extra momentum step.

Momentum

Classical momentum Nesterov’s 

momentum



• Classical momentum:

• Nesterov’s momentum:

Momentum



Stochastic gradient descent

• The loss function we are optimizing for a machine 
learning problem is almost always a summation over 
the individual losses of each training example:

• Obtaining the gradient of the entire summation 
requires computing the gradient for each data term:

• This is very inefficient for big data, e.g. learning from 
billions of Wikipedia articles or millions of images



Stochastic gradient descent

• Intuition: dataset can be highly redundant, especially 
for big data. Update the weights using a rough 
estimate of the exact gradient that is fast to compute

• This turned out to be the most important algorithm to 
advance machine learning, deep learning and AI in the 
past ten years

• SGD is the most famous algorithm to scale to big data: 
as the size of the dataset increases, the computation 
per weight update remains the same



Stochastic gradient descent

• SGD idea: at each iteration, subsample a small amount 
of data (even just one point can work) and use that to 
estimate the gradient

• Each update is noisy, but very fast!
• This is the basis of optimizing ML algorithms with huge 

datasets (e.g., recent deep learning)
• Computing gradients using the full dataset is called 

batch learning; using subsets of data is called 
mini-batch learning



Stochastic gradient descent

• Suppose we stupidly made a copy of each point so that we 
now have twice as much data. The log-likelihood is now:

• In other words, the optimal parameters don’t change, but 
we have to do twice as much work to compute the log-
likelihood and its gradient!

• The reason SGD works is because similar data yield similar 
gradients, so if there is enough redundancy in the data, the 
noise from subsampling won’t be so bad



Stochastic gradient descent
• How do we choose an appropriate step size?

• Robbins and Monro (1951): pick a sequence of ηt such 
that:

• Satisfied by                 (as one example)



Stochastic gradient descent

• SGD is very easy to implement compared to other 
methods, but the step sizes need to be tuned to 
different problems, whereas batch learning 
typically “just works”

• Tip 1: divide the log-likelihood estimate by the size 
of your mini-batches. This makes the learning rate 
invariant to mini-batch size

• Tip 2: subsample without replacement so that you 
visit each point on each pass through the dataset 
(this is known as an epoch)



References on optimization

• Convex optimization: 
- http://web.stanford.edu/class/ee364a/index.html
- http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

• Stats (python):
- Scipy stats: http://docs.scipy.org/doc/scipy-0.14.0/reference/stats.html

• Optimization (python):
- Scipy optimize: 

http://docs.scipy.org/doc/scipy/reference/optimize.html
• Optimization (Matlab):

- minFunc: http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
• General ML:

- Scikit-Learn: http://scikit-learn.org/stable
• See the course website as well

http://web.stanford.edu/class/ee364a/index.html
http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://docs.scipy.org/doc/scipy-0.14.0/reference/stats.html
http://docs.scipy.org/doc/scipy/reference/optimize.html
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://scikit-learn.org/stable/


Today’s lecture

• Tricks for gradient descent

– Momentum

– SGD

• MLE

– Univariate Normal distribution

– Multivariate Normal distribution

– Mixture of Normal distributions

• Regularization



Maximum Likelihood Estimation

• MLE is a way of estimating the parameters of 
a model

• An alternative to MLE is the Maximum a-
posteriori probability (MAP) estimate

• Recall:



Recall: Univariate Normal Distribution 

• In the case of a single variable x, the Normal (aka Gaussian)

distribution takes the form:

which is governed by two parameters:

- µ (mean)

- σ2 (variance)

• The Normal distribution satisfies:



MLE for the Normal Distribution
• Suppose we have a dataset of i.i.d. observations x = (x1,…,xN)T, 

representing N one-dimensional observations.  

• Because our dataset x is i.i.d., we can write down the joint

probability of all the data points given µ and σ2 as: 

Likelihood function

When viewed as a function of µ 

and σ2, this is called the likelihood 

function for the Normal 



MLE for the Normal Distribution
• The log-likelihood can be written as: 

Likelihood function

• Maximizing w.r.t µ gives: Sample mean

• Maximizing w.r.t σ2 gives: 

Sample variance



Multivariate Normal Distribution 

• For a D-dimensional vector x, the Normal distribution takes the form:

and |Σ| denotes the determinant of Σ

which is governed by two parameters:

- µ is a D-dimensional mean vector. 

- Σ is a D by D covariance matrix.  

• Note that the covariance matrix is a positive-definite matrix



Geometry of the Normal Distribution

• We sometimes write: 

• Δ is known as Mahalanobis distance. The Normal distribution is

constant on surfaces in x-space for which Δ is constant.  

• Other properties:

• For a D-dimensional vector x, the Normal distribution takes the form:



The precision matrix

•Consider a D-dimensional Normal distribution:

•We can partition x into two disjoint subsets xa and xb:

•In some situations, it is more convenient to work with the

precision matrix (inverse of the covariance matrix): 

•Note that Λaa is not given by the inverse of Σaa
•The above is useful when exploring graphical models (to come)



Conditional Distribution

• It turns out that the conditional distribution is also a Normal 

distribution: 

Linear function of xb

Covariance does not 
depend on xb



Marginal Distribution

•It turns out that the marginal distribution is also a Normal

distribution: 

• For a marginal distribution, the mean and covariance are most

simply expressed in terms of the partitioned covariance matrix.  



Conditional and Marginal Distributions



MLE of the Multivariate Normal Distribution

• Suppose we observed i.i.d data

• We can construct the log-likelihood function, which is a function of 

µ and Σ:

• Note that the likelihood function depends on the N data points only 

through the following sums: 

“Sufficient Statistics”



MLE of the Multivariate Normal Distribution

• To find a maximum likelihood estimate of the mean, we set the 

derivative of the log-likelihood function to zero: 

and solve to obtain:

• Similarly, we can find the ML estimate of Σ:



Example 3: Mixture of Gaussians

• When modeling real-world data, the Gaussian (Normal) assumption 

may not be appropriate

Single Gaussian 
(Normal) distribution

Mixture of two 
Gaussians

• Consider the following example: Old Faithful Dataset



Mixture of Gaussians

• We can combine simple models into a complex model by defining a 

superposition of K Normal densities of the form:  

Component

Mixing coefficient

K=3

• Note that each Normal component has its own mean µk and covariance

Σk. The parameters πk are called mixing coefficients

• More generally, mixture models can comprise linear combinations of 

other distributions 



Mixture of Gaussians

• Illustration of a mixture of 3 Gaussians in a 2-dimensional space: 

(a) Contours of constant density of each of the mixture components,

along with the mixing coefficients

(b) Contours of marginal probability density  

(c) A surface plot of the distribution p(x) 



Maximum Likelihood Estimation

• Given a dataset D, we can determine model parameters µk, Σk, πk by 

maximizing the log-likelihood function: 

Log of a sum: no closed-form solution

• Solution: use standard, iterative, numerical optimization methods or 

the Expectation Maximization algorithm. (More on this later)
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Simplistic method to fit a line:
Linear Least Squares

From last class: Minimize the sum of the squares of the errors between 

the predictions                   for each data point xn and the corresponding 

real-valued targets tn.  

Loss function: sum-of-squared error function:

Source: Wikipedia



LLS for Polynomial Curve Fitting

Note: the polynomial function is a nonlinear function of x, but it is a linear 

function of w, the coefficients! Linear Models

Goal: Fit the data using a polynomial function of the form:

Consider observing a training set consisting of N 1-dimensional observations:              

together with corresponding real-valued targets:



Generalization
• The goal is achieve good generalization by making accurate predictions 

for new test data that is not known during learning. 

• Choosing the values of parameters that minimize the loss function on 

the training data may not be the best option. 

• We would like to model the true regularities in the data and ignore the 

noise in the data: 

- It is hard to know which regularities are real and which are accidental 

due to the particular training examples we happen to pick. 

• Intuition: We expect the model to generalize 

if it explains the data well given the 

complexity of the model. 
• If the model has as many degrees of freedom 

as the data, it can fit the data perfectly. But 

this is not very informative. 
• Some theory on how to control model 

complexity to optimize generalization. 



One Way to Penalize Complexity 
One technique for controlling over-fitting phenomenon is regularization, 

which amounts to adding a penalty term to the error function

where  and ¸ is    is called the regularization 

term. Note that we do not penalize the bias term w0

•The idea is to “shrink” estimated parameters 

towards zero (or towards the mean of some other 

weights)

•Shrinking to zero: penalize coefficients based on 

their size

•For a penalty function which is the sum of the 

squares of the parameters, this is known as a

“weight decay” or “ridge regression”    

penalized error function regularization parametertarget 
value



Regularized Least Squares

• Let us consider the following error function: 

Data term + Regularization term

• Using sum-of-squares error function with a quadratic penalization 

term, we obtain: 

which is minimized by setting: 

λ is called the 
regularization 
coefficient.

Ridge 
regression

The solution adds a positive constant to the diagonal of              This helps 

make the problem nonsingular, even if             is not of full rank (e.g. when the 

number of training examples is less than the number of basis functions)  



Effect of Regularization

• The overall error function is the sum 

of two parabolic bowls. 

• The combined minimum lies on the 

line between the minimum of the 

squared error and the origin.

• The regularizer shrinks model 

parameters to zero. 



Other Regularizers

Using a more general regularizer, we get:

Lasso Quadratic



The Lasso 

• Penalize the absolute value of the weights:

• For sufficiently large λ, some of the coefficients will be driven to  

zero, leading to a sparse model 

• The above formulation is equivalent to:

• The two approaches are related using Lagrange multipliers

unregularized sum-of-squares error

• The Lasso solution is a quadratic programming problem: 

can be solved efficiently



Lasso vs. Quadratic Penalty

Lasso tends to generate sparser solutions compared to a quadratic 

regularizer (sometimes called L1 and L2 regularizers)



Probabilistic Perspective of Regularization
• So far we saw that polynomial curve fitting can be expressed in terms 

of error minimization. We now view it from probabilistic perspective. 

• Suppose that our data arose from a statistical model:

where ε is a random error having Normal distribution with zero 

mean, and is independent of x

where β is a precision parameter, 

corresponding to the inverse variance.  

Thus we have:

We will use probability distribution and 
probability density interchangeably. It 
should be obvious from the context.



Maximum-Likelihood Regularization
If the data are assumed to be independently and identically 

distributed (i.i.d assumption), the likelihood function takes the 

form:  

It is often convenient to maximize the log of the likelihood function:

• Maximizing log-likelihood with respect to w (under the assumption

of a Normal noise) is equivalent to minimizing the sum-of-squared

error function. 
• Determine by maximizing log-likelihood. Then maximizing

w.r.t. β: 



Predictive Distribution

Once we determined the parameters w and β, we can make prediction 

for new values of x:  


