
ECE521 lecture 4:
19 January 2017

Optimization, MLE,
regularization

First four lectures

• Lectures 1 and 2:
– Intro to ML
– Probability review
– Types of loss functions and algorithms

• Lecture 3:
– KNN
– Convexity in optimization

• Lecture 4:
– Momentum and SGD in optimization
– MLE
– Regularization

Today’s lecture

• Tricks for gradient descent

– Momentum

– SGD

• MLE

– Univariate Normal distribution

– Multivariate Normal distribution

– Mixture of Normal distributions

• Regularization

•

Momentum

• Intuition: instead of zigzagging around the weight
space using the latest gradient, we would like to
“accelerate” learning by accumulating some
“velocity/momentum” using the past gradients

• Add a momentum term to the update equation:

• is the momentum coefficient on how
much velocity we pick up. 0.9 works well in
general

Momentum

• Imagine a ball on the loss function surface. The
location of the ball in the horizontal plane represents
the weight vector

• The ball starts off by following the gradient, but once it
has velocity, it no longer does steepest descent

• Its momentum tends to keep it going towards the
previous direction

Momentum

weight space

loss

• One extension is Nesterov’s momentum

• Intuition: classical momentum method often has an
undesirable overshoot behavior. This can be reduced
by “looking ahead”. The gradient is computed
assuming we take one extra momentum step.

Momentum

Classical momentum Nesterov’s

momentum

• Classical momentum:

• Nesterov’s momentum:

Momentum

Stochastic gradient descent

• The loss function we are optimizing for a machine
learning problem is almost always a summation over
the individual losses of each training example:

• Obtaining the gradient of the entire summation
requires computing the gradient for each data term:

• This is very inefficient for big data, e.g. learning from
billions of Wikipedia articles or millions of images

Stochastic gradient descent

• Intuition: dataset can be highly redundant, especially
for big data. Update the weights using a rough
estimate of the exact gradient that is fast to compute

• This turned out to be the most important algorithm to
advance machine learning, deep learning and AI in the
past ten years

• SGD is the most famous algorithm to scale to big data:
as the size of the dataset increases, the computation
per weight update remains the same

Stochastic gradient descent

• SGD idea: at each iteration, subsample a small amount
of data (even just one point can work) and use that to
estimate the gradient

• Each update is noisy, but very fast!
• This is the basis of optimizing ML algorithms with huge

datasets (e.g., recent deep learning)
• Computing gradients using the full dataset is called

batch learning; using subsets of data is called
mini-batch learning

Stochastic gradient descent

• Suppose we stupidly made a copy of each point so that we
now have twice as much data. The log-likelihood is now:

• In other words, the optimal parameters don’t change, but
we have to do twice as much work to compute the log-
likelihood and its gradient!

• The reason SGD works is because similar data yield similar
gradients, so if there is enough redundancy in the data, the
noise from subsampling won’t be so bad

Stochastic gradient descent
• How do we choose an appropriate step size?

• Robbins and Monro (1951): pick a sequence of ηt such
that:

• Satisfied by (as one example)

Stochastic gradient descent

• SGD is very easy to implement compared to other
methods, but the step sizes need to be tuned to
different problems, whereas batch learning
typically “just works”

• Tip 1: divide the log-likelihood estimate by the size
of your mini-batches. This makes the learning rate
invariant to mini-batch size

• Tip 2: subsample without replacement so that you
visit each point on each pass through the dataset
(this is known as an epoch)

References on optimization

• Convex optimization:
- http://web.stanford.edu/class/ee364a/index.html
- http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

• Stats (python):
- Scipy stats: http://docs.scipy.org/doc/scipy-0.14.0/reference/stats.html

• Optimization (python):
- Scipy optimize:

http://docs.scipy.org/doc/scipy/reference/optimize.html
• Optimization (Matlab):

- minFunc: http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
• General ML:

- Scikit-Learn: http://scikit-learn.org/stable
• See the course website as well

http://web.stanford.edu/class/ee364a/index.html
http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://docs.scipy.org/doc/scipy-0.14.0/reference/stats.html
http://docs.scipy.org/doc/scipy/reference/optimize.html
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://scikit-learn.org/stable/

Today’s lecture

• Tricks for gradient descent

– Momentum

– SGD

• MLE

– Univariate Normal distribution

– Multivariate Normal distribution

– Mixture of Normal distributions

• Regularization

Maximum Likelihood Estimation

• MLE is a way of estimating the parameters of
a model

• An alternative to MLE is the Maximum a-
posteriori probability (MAP) estimate

• Recall:

Recall: Univariate Normal Distribution

• In the case of a single variable x, the Normal (aka Gaussian)

distribution takes the form:

which is governed by two parameters:

- µ (mean)

- σ2 (variance)

• The Normal distribution satisfies:

MLE for the Normal Distribution
• Suppose we have a dataset of i.i.d. observations x = (x1,…,xN)T,

representing N one-dimensional observations.

• Because our dataset x is i.i.d., we can write down the joint

probability of all the data points given µ and σ2 as:

Likelihood function

When viewed as a function of µ

and σ2, this is called the likelihood

function for the Normal

MLE for the Normal Distribution
• The log-likelihood can be written as:

Likelihood function

• Maximizing w.r.t µ gives: Sample mean

• Maximizing w.r.t σ2 gives:

Sample variance

Multivariate Normal Distribution

• For a D-dimensional vector x, the Normal distribution takes the form:

and |Σ| denotes the determinant of Σ

which is governed by two parameters:

- µ is a D-dimensional mean vector.

- Σ is a D by D covariance matrix.

• Note that the covariance matrix is a positive-definite matrix

Geometry of the Normal Distribution

• We sometimes write:

• Δ is known as Mahalanobis distance. The Normal distribution is

constant on surfaces in x-space for which Δ is constant.

• Other properties:

• For a D-dimensional vector x, the Normal distribution takes the form:

The precision matrix

•Consider a D-dimensional Normal distribution:

•We can partition x into two disjoint subsets xa and xb:

•In some situations, it is more convenient to work with the

precision matrix (inverse of the covariance matrix):

•Note that Λaa is not given by the inverse of Σaa
•The above is useful when exploring graphical models (to come)

Conditional Distribution

• It turns out that the conditional distribution is also a Normal

distribution:

Linear function of xb

Covariance does not
depend on xb

Marginal Distribution

•It turns out that the marginal distribution is also a Normal

distribution:

• For a marginal distribution, the mean and covariance are most

simply expressed in terms of the partitioned covariance matrix.

Conditional and Marginal Distributions

MLE of the Multivariate Normal Distribution

• Suppose we observed i.i.d data

• We can construct the log-likelihood function, which is a function of

µ and Σ:

• Note that the likelihood function depends on the N data points only

through the following sums:

“Sufficient Statistics”

MLE of the Multivariate Normal Distribution

• To find a maximum likelihood estimate of the mean, we set the

derivative of the log-likelihood function to zero:

and solve to obtain:

• Similarly, we can find the ML estimate of Σ:

Example 3: Mixture of Gaussians

• When modeling real-world data, the Gaussian (Normal) assumption

may not be appropriate

Single Gaussian
(Normal) distribution

Mixture of two
Gaussians

• Consider the following example: Old Faithful Dataset

Mixture of Gaussians

• We can combine simple models into a complex model by defining a

superposition of K Normal densities of the form:

Component

Mixing coefficient

K=3

• Note that each Normal component has its own mean µk and covariance

Σk. The parameters πk are called mixing coefficients

• More generally, mixture models can comprise linear combinations of

other distributions

Mixture of Gaussians

• Illustration of a mixture of 3 Gaussians in a 2-dimensional space:

(a) Contours of constant density of each of the mixture components,

along with the mixing coefficients

(b) Contours of marginal probability density

(c) A surface plot of the distribution p(x)

Maximum Likelihood Estimation

• Given a dataset D, we can determine model parameters µk, Σk, πk by

maximizing the log-likelihood function:

Log of a sum: no closed-form solution

• Solution: use standard, iterative, numerical optimization methods or

the Expectation Maximization algorithm. (More on this later)

Today’s lecture

• Tricks for gradient descent

– Momentum

– SGD

• MLE

– Univariate Normal distribution

– Multivariate Normal distribution

– Mixture of Normal distributions

• Regularization

Simplistic method to fit a line:
Linear Least Squares

From last class: Minimize the sum of the squares of the errors between

the predictions for each data point xn and the corresponding

real-valued targets tn.

Loss function: sum-of-squared error function:

Source: Wikipedia

LLS for Polynomial Curve Fitting

Note: the polynomial function is a nonlinear function of x, but it is a linear

function of w, the coefficients! Linear Models

Goal: Fit the data using a polynomial function of the form:

Consider observing a training set consisting of N 1-dimensional observations:

together with corresponding real-valued targets:

Generalization
• The goal is achieve good generalization by making accurate predictions

for new test data that is not known during learning.

• Choosing the values of parameters that minimize the loss function on

the training data may not be the best option.

• We would like to model the true regularities in the data and ignore the

noise in the data:

- It is hard to know which regularities are real and which are accidental

due to the particular training examples we happen to pick.

• Intuition: We expect the model to generalize

if it explains the data well given the

complexity of the model.
• If the model has as many degrees of freedom

as the data, it can fit the data perfectly. But

this is not very informative.
• Some theory on how to control model

complexity to optimize generalization.

One Way to Penalize Complexity
One technique for controlling over-fitting phenomenon is regularization,

which amounts to adding a penalty term to the error function

where and ¸ is is called the regularization

term. Note that we do not penalize the bias term w0

•The idea is to “shrink” estimated parameters

towards zero (or towards the mean of some other

weights)

•Shrinking to zero: penalize coefficients based on

their size

•For a penalty function which is the sum of the

squares of the parameters, this is known as a

“weight decay” or “ridge regression”

penalized error function regularization parametertarget
value

Regularized Least Squares

• Let us consider the following error function:

Data term + Regularization term

• Using sum-of-squares error function with a quadratic penalization

term, we obtain:

which is minimized by setting:

λ is called the
regularization
coefficient.

Ridge
regression

The solution adds a positive constant to the diagonal of This helps

make the problem nonsingular, even if is not of full rank (e.g. when the

number of training examples is less than the number of basis functions)

Effect of Regularization

• The overall error function is the sum

of two parabolic bowls.

• The combined minimum lies on the

line between the minimum of the

squared error and the origin.

• The regularizer shrinks model

parameters to zero.

Other Regularizers

Using a more general regularizer, we get:

Lasso Quadratic

The Lasso

• Penalize the absolute value of the weights:

• For sufficiently large λ, some of the coefficients will be driven to

zero, leading to a sparse model

• The above formulation is equivalent to:

• The two approaches are related using Lagrange multipliers

unregularized sum-of-squares error

• The Lasso solution is a quadratic programming problem:

can be solved efficiently

Lasso vs. Quadratic Penalty

Lasso tends to generate sparser solutions compared to a quadratic

regularizer (sometimes called L1 and L2 regularizers)

Probabilistic Perspective of Regularization
• So far we saw that polynomial curve fitting can be expressed in terms

of error minimization. We now view it from probabilistic perspective.

• Suppose that our data arose from a statistical model:

where ε is a random error having Normal distribution with zero

mean, and is independent of x

where β is a precision parameter,

corresponding to the inverse variance.

Thus we have:

We will use probability distribution and
probability density interchangeably. It
should be obvious from the context.

Maximum-Likelihood Regularization
If the data are assumed to be independently and identically

distributed (i.i.d assumption), the likelihood function takes the

form:

It is often convenient to maximize the log of the likelihood function:

• Maximizing log-likelihood with respect to w (under the assumption

of a Normal noise) is equivalent to minimizing the sum-of-squared

error function.
• Determine by maximizing log-likelihood. Then maximizing

w.r.t. β:

Predictive Distribution

Once we determined the parameters w and β, we can make prediction

for new values of x:

