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Logistic Regression



Outline
● Review of decision theory

● Logistic regression

● A single neuron

● Multi-class classification
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Outline
● Decision theory is conceptually easy and computationally hard

● Learning objectives:

○ Optimizing misclassification rate  -> choosing action according to the largest P(C | x) 

○ Develop intuitions about misclassification on the P(x, C) graph

○ Why expected loss is a good idea? => Capture asymmetry in our decisions
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● We would like to say something formally about why we prefer certain actions 
over others. We would also like to have a framework to help us decide on the 
optimal action.

● In classification, the action is choosing the class label given the inputs. 

● We again turn to probability theory and assume we have the joint distribution 
P(x, C)

Decision theory

4



● One possible decision rule (a simple intuition): the best action for the current 
input x is to choose the class label Cj that has the highest conditional 
probability P(Cj | x) among all the labels.

● We can define a framework under which choosing the most probable class 
P(Cj | x) is the optimal decision rule:

○ Define misclassification rate = P(mistake) and consider a binary classification task:

Decision theory: misclassification rate
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decision 
boundary

classify as C1 in R1 region classify as C2 in R2 region

misclassify x in R1 as C2 misclassify x in R2 as C1



● Given the joint distribution of the inputs and the label, P(x, C), we can then 
plot p(x, C1) and p(x, C2). The goal is to “slide”     (decision boundary) and 
adjust the regions R such that we minimize the misclassification rate.

Decision theory: misclassification rate
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= (area of green + area of red) + area of blue

optimal 
decision 
boundary



● Given the joint distribution of the inputs and the label, P(x, C), we can then 
plot p(x, C1) and p(x, C2). The goal is to “slide”     (decision boundary) and 
adjust the regions R such that we minimize the misclassification rate.

Decision theory: misclassification rate

7

optimal 
decision 
boundary

Intuition: the overlapping area (green + 
blue) under the joint distribution P(x, C) 
is the minimum misclassification rate   
(the red region vanishes)

This corresponds to picking R1 such 
that P(x, C1) > P(x, C2)

So we recovered our intuitive 
decision rule of picking the most 
probable class:
minimizing misclassification rate is 
equivalent to picking the most 
probable class



● However, not all mistakes are the same. 

○ Misclassifying positive cancer patients as negative (false negative) can be devastating. 
 It is not as bad as misclassifying a negative cancer patient as positive (false positive).

○ Misclassifying non-faces as positive (false positive) can be extremely frustrating for smart 
digital cameras. False negatives are generally more tolerable in this case.

● We need a more general framework to weigh the importance of different 
mistakes under an application.

Decision theory: loss matrix
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● We might as well just integrate over all regions under the joint distribution  
P(C, x) and weight them by a loss matrix L. We define the expected loss:

● In the cancer example, C1 = cancer, C2 = normal. Because false negatives are 
really bad, we can weight them highly:

Decision theory: loss matrix
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false negative



● The misclassification rate is a special case of the expected loss in which all 
the off-diagonal terms of the loss matrix is 1

● Misclassification rate has equal weightings on the false positives and false 
negatives. It is often not desirable in many applications.

Decision theory: loss matrix
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● Interesting facts:

● The loss matrix is also called the risk or utility function.

● One of the challenges of decision theory is figuring out what the loss matrix or 
utility function should be. It is known in economics that the utility of money is 
notoriously nonlinear and even inconsistent: e.g. below, most people choose 
A over B but at the same time prefer D over C:

Decision theory: loss matrix
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A. $1 million guaranteed
B. 89% chance $1 million

10% chance $2.5 million
1% chance nothing

C.      89% chance nothing
          11% chance $1 million
D.      90% chance nothing

10% $2.5 million



Outline
● Decision theory is conceptually easy and computationally hard

● Learning objectives:

○ Optimizing misclassification rate  -> choosing action according to the largest P(C | x) 
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○ Why expected loss is a good idea? => Capture asymmetry in our decisions

12



Outline
● Review of decision theory
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Outline
● Logistic regression

● Prerequisite: linear regression, MLE

● Learning objectives:

○ Logistic/sigmoid function and its derivatives

○ Cross-entropy loss function and its derivatives

○ Probabilistic interpretation (assignment 2)
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● Given a set of training data and their real-valued output, linear regression 
models the output as a weighted sum of the inputs: 

● This is also known as linear filtering, in signal processing

Linear regression
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● The weight vector learns the linear trend/slope of the training data

● If the input x has zero mean, the bias unit learns the averaged output value

Linear regression
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● Given a set of training data and their target class labels (positive or negative 
class) encoded as 1 and 0, you can train a model that produces a score, and 
then threshold the score. Problems:

○ It is not clear how to compute the confidence of of prediction in this setup

○ What should be the threshold? Use decision theory to set it?

Linear regression as a classifier
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● Alternatively, have a model directly regress the binary class labels

● We may decide to use a linear regression model to directly predict 1 and 0. 
Problems:

○ What does it mean for the model to predict -10 on a test data? 

○ The range of the linear regression’s prediction is unrestricted:              to 

Linear regression as a classifier
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● A simple solution is to use a logistic/sigmoid function to “squash” the linear 
regression output to be between 0  and 1:

● Some nice properties:

○  

○  

○

Logistic regression

19This is perfect to encode P(t=1 | x) !



● The sigmoid function can be derived from the ratio of log probabilities of two 
classes, which is also known as log-odds:

● If we rearrange the terms and solve for 

P(t=1 | x), we will get again the sigmoid

       function:

Logistic regression
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● We now have a new model whose output is a logistic function of the weighted 
sum of the inputs, i.e. the logistic regression model. The classification 
prediction is computed as:

● Define the training loss function using the squared L2 norm:

Logistic regression
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● We now have a new model whose output is a logistic function of the weighted 
sum of the inputs, i.e. the logistic regression model. The classification 
prediction is computed as:

● Define the training loss function using the squared L2 norm:

● Take the gradient w.r.t. W

Logistic regression
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● Recap: we started out first by designing a reasonable linear model. We chose 
an L2 loss function to measure the discrepancy between predicted label and 
the target class.

● So take a step back: why did we choose squared L2 in the first place?

○ Analysis is easy. It is differentiable and has a simple gradient.

○ It has a nice probabilistic interpretation with Gaussian error

i. In the linear regression case, maximize the likelihood of data P(data) = minimizing sum 
of the squared L2 loss

Logistic regression
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● Squared L2 loss has a problem for 

       classification under the sigmoid function

● Consider gradient of the sigmoid function:

● The partial derivative is very close to zero 

       away from the origin. i.e. there is very little 

       learning signal as the model gets better

Logistic regression
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● Cross-entropy is a better loss function.

● Take the gradient w.r.t. W. The gradient under the cross-entropy loss is the 
same as the gradient for the linear regression model!

Cross-entropy loss function
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where,



● What is happening during learning?

● In what circumstances is the gradient zero? i.e. the model stops learning any 
new information. Either:

○ All the individual gradients are zero (perfectly separable case), or

○ The gradients from different training examples cancel out (most likely scenario)

Learning logistic regression
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The gradient reflects the correlation between the error and the inputs



● The gradient reflects the correlation between the mistakes and the input 
features

○ After learning, the values of the individual weights indicate the importance of its input to the 
final prediction

○ If an input feature Xn is positively correlated with the target label, its weight will be a large 
positive value

Learning logistic regression
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Concepts in the course so far
● Problem formulations:

○ i.i.d.; choose a loss function (distance function), i.e. squared L2 loss, cross-entropy loss; MLE, 
MAP (choose a likelihood function and prior, then optimize it to obtain the model parameters); 
weight-decay regularizer

 
● Learning algorithms: 

○ gradient descent, stochastic gradient descent, momentum, 

● Models: 
○ linear regression; logistic regression; k-NN (no learning required)

● Some theoretical results 
○ Provide some additional intuition: how to pick the optimal regressor, optimal decision rules 

(how to set the threshold/decision boundary); expected loss
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