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Outline
● Logistic regression (Continue)

● A single neuron

● Learning neural networks

● Multi-class classification
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● The output of a logistic regression model is a sigmoid function of a weighted 
sum of its inputs:

● Recall the sigmoid function and its nice derivatives:

○ The sigmoid output is bounded between 0 and 1

Logistic regression
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● We may choose to train logistic regression model using a squared L2 loss 
function:

● The gradient of the loss function w.r.t. W or b can be obtained easily using 
chain-rule of calculus:

Logistic regression
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Gradient 
w.r.t. the 
weight 
vector

Gradient w.r.t. 
the bias?? 
(your own 
exercise)



● Using a squared L2 loss function to train logistic regression models has a 
major flaw: 

○ If the model parameters are poorly initialized and the model is making nearly binary 
predictions at the first iteration of a gradient descent algorithm, then learning will happen really 
slowly using squared L2 loss because of the vanishing gradient from the sigmoid function. 

○ One way to see this is to have a model 

Logistic regression
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● Cross-entropy is a better loss function.

● Take the gradient w.r.t. W. The gradient under the cross-entropy loss is the 
same as the gradient for the linear regression model!

Cross-entropy loss function
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where,



● What is happening during learning?

● In what circumstances is the gradient zero? i.e. the model stops learning any 
new information. Either:

○ All the individual gradients are zero (perfectly separable case), or

○ The gradients from different training examples cancel out (most likely scenario)

Learning logistic regression
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The gradient is the correlation between the error and the inputs



● The gradient reflects the correlation between the mistakes and the input 
features.

○ After learning, the values of the individual weights indicate the importance of its input to the 
final prediction

○ If an input feature Xn is positively correlated with the target label, its weight will be a large 
positive value

Learning logistic regression
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● Convert a text string into reasonable input-feature vectors:

○ The bag-of-words representation:

○ Count the frequency of a word appearing from a preset vocabulary  

Learning logistic regression for movie review

9

[good, fantastic, …, terrible, disappointed, awesome,...]

[2,         0,          …,    0,            1,                      5,      ...]



● Consider a positive word that correlates to the positive review of a movie:

○ Assume the prediction starts at random 50% random guessing. 

○ The weight of the positive word should increase during learning

Learning logistic regression for movie review
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[good, fantastic, …, terrible, disappointed, awesome,...]

[2,         0,          …,    0,            1,                      5,      ...]



● Consider a random word that appears frequently and appears in both positive 
and negative review:

○ Its weight will likely to be around zero.

○ The gradient is not very informative and the error will cancel out between the positive class 
and negative class.

Learning logistic regression for movie review
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● Consider a random word that appears rarely and only appears in the positive  
review:

○ The model will likely not perform well because it is overly confident about a rare instance. 

○ MAP should fix this problem

Learning logistic regression for movie review

12

σ



● Decision boundary of logistic regression

○ The weight vector is perpendicular to the decision boundary

○

Intuitive geometry of logistic regression
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Decision 
boundary

Positive class

Negative class



Concept in the course so far
● Problem formulations:

○ i.i.d., different distance functions, squared L2 loss, cross-entropy loss, MLE, MAP, 
weight-decay regularizer

 
● Learning algorithms: 

○ gradient descent, stochastic gradient descent, momentum

● Models: 
○ linear regression, logistic regression, k-NN (no learning required)

● Some theoretical results 
○ Provide some additional intuition: how to pick the optimal regressor, optimal decision rules 

(how to set the threshold/decision boundary), expected loss
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Outline
● Logistic regression

● Learning objectives:

○ Logistic/sigmoid function and its derivatives

○ Cross-entropy loss function and its derivatives

○ Probabilistic interpretation (assignment 2)
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Outline
● Logistic regression (Continue)

● A single neuron

● Learning neural networks

● Multi-class classification
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● Neural networks are flexible computation models that consist of many smaller 
computational modules called neurons or hidden units:

○ Neural networks are like continuous real-valued electrical circuits. 

○ It is very modular and some special modules are designed for reusability and abstraction. 

○ All continuous functions are neural networks.

○ All the learnt knowledge of a neural network is stored in its 
weight connections; it is also called “connectionism” 
(a name popular before the AI Winter)

Neural networks
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● One very useful abstraction is the concept of a “layer”: 

○ A hidden layer is a group of hidden units that have connections one layer above and one layer 
below. 

○ There is no inter-layer connection among the hidden units within a layer.

○ This abstraction is computationally efficient because all the hidden units within a layer can be 
computed in parallel.

Neural networks
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● Deep learning typically refers to a neural network with more than three hidden 
layers.

○ Deep neural networks can mathematically represent any continuous function 
given enough layers, but they also require additional tricks to 
learn useful representations for any tasks.

○ They work really well in supervised learning 
given enough data.

○ A deep neural network is like a complex system in biology: 
we understand a lot about what the simple module does, but  
it quickly becomes really hard to understand what the 
system does, i.e. a “black box”.

Neural networks
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● An artificial neuron is a simple computation unit that receives inputs from 
other simple computation units:

○ The effect of each input on the final output of the neuron is controlled by a weight

○ The weights can be positive or negative values for encoding respectively positive or negative 
contributions from the inputs

An artificial neuron
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● An artificial neuron is a simple computation unit that receives inputs from 
other simple computation units:

○ The effect of each input on the final output of the neuron 
is controlled by a weight

○ The weights can be positive or negative values for 
encoding +ve or -ve contributions from the inputs

○ A weighted sum of the inputs was first proposed 
by McCulloch-Pitts (1943)

An artificial neuron
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● Instead of using a hard step function, a soft, smooth and differentiable step 
function is desirable if we are going to use the gradient descent algorithm to 
learn our model:

○ Sigmoid neurons can be thought of as soft thresholding units.

○ Logistic regression models are simply neural networks with   
a single logistic neuron.

Some simple neurons: sigmoid neurons

22

σ



● A Linear neuron directly outputs the weighted sum of the inputs:

○ Linear regression is the simplest neural network with                                                                 
a single linear neuron.

○ It has a constant partial derivative which is great for gradient descent.

○ However, stacking layers of linear neurons does not increase the 
representational power of a model. Nonlinearity is important for 
building richer and more flexible models.

Some simple neurons: linear neurons
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● Linear neurons can easily be modified to exhibit nonlinear behaviors:

○ The non-positive value are forced to be zero.

○ The ReLU neurons still have a very nice constant gradient if 
the weighted sum of the inputs is positive.

○ It is mathematically non-differentiable at zero, but we ignore that 
and use gradient descent anyways. It will work brilliantly well. 
(numerically, we will never get exactly zero summed inputs anyways.)

Some simple neurons: rectified linear units (ReLU)
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Outline
● Logistic regression (Continue)

● A single neuron

● Learning neural networks
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● There are two ways to solve a problem: 
1. Hire the most ingenious software engineers to hard-code a program. 
2. Gather a huge dataset and learn the program from the data.  

○ Deep neural networks avoid time-consuming feature engineering by hand, and as the datasets 
grow larger they can discover better and better features with no human intervention.

○ Neural networks can also be understood as a form of adaptive basis function model where the 
model learns layers of basis functions. The activation function used for a neuron is similar to 
the nonlinear basis functions.

Neural networks
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● The model now consists of many artificial neurons wired together into a large 
network. For clarity, we will use the following notation for our algorithms:

○ The output of a neuron or the hidden activation is denoted as h

○ Scalar weight connections are indexed by the two neurons it connects 

○ The input to the network is denoted x

○ The output of the network is denoted as 

○ The element-wise hidden activation function or the activation function or 
nonlinearity, denoted as        , is the nonlinear transformation for the  
weighted sum of the inputs of a neuron, e.g. sigmoid, ReLU... 

○ The weighted sum of a neuron's inputs is denoted as z

Notations for neural networks
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● Forward propagation computes all the hidden activations h and the output of 
the neural network

○   

○ This requires computing all the hidden activations that are the inputs to the 
current hidden units.

○ The forward propagation can be written as a recursive algorithm:

○ The naive recursive algorithm is bad because there are a lot of 
redundant computations. We would like to cache the appropriate  
intermediate values and reuse them.

Forward propagation
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● Back-propagation (Rumelhart, Hinton and Williams, 1986) is a 
dynamic programming method to reuse previous computations
when computing the gradient of some variable using the 
chain rule from calculus.

○   

○ In its simplest form:

○       can be further expanded until the output of the neural network.

○ The key observation here is that the gradient of a connection is a 
product between the input and the partial derivative of the weighted  
sum of that neuron.

Back-propagation
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● What do we need to compute the gradients of the weights?

○ First, we need to do a forward pass and cache all the intermediate 
hidden activations.

○ Differentiate the loss function w.r.t. the output  of the neural 
network as the initial step for back-propagation

○ The intermediate hidden activations are needed for the
partial derivative of the weighted sums

Back-propagation
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Weight matrix gradient 
is an outer product

Back-propagation (left to right)



● TensorFlow at its core is a forward/back-propagation execution engine:

○ The computation graphs are neural networks

○ The automatic differentiation executes back-propagation for the 
variables (weights) in the computation graph. It can be 
automated if the partial derivatives of each math operator 
are pre-defined.

○ session.run() or eval() runs the forward/back-propagation algorithm 
and caches the needed intermediate computation results for later. 

○ The TensorFlow framework also computes the independent 
computations in parallel asynchronously.

TensorFlow, back-propagation and auto-diff
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