
ECE521:

Week 11, Lecture 20

27 March 2017:

HMM learning/inference

With thanks to Russ Salakhutdinov

•Examples of other perspectives

• Murphy 17.4

• End of Russell & Norvig 15.2

(Artificial Intelligence: A Modern Approach)

• Bishop 13.2.5, 8.4.4

Outline

• HMM learning and inference:

1) Probability of an observed data sequence

2) Learning the model parameters

3) Inferring the most likely state sequence

• Thursday: Message passing

• Introduction

• Sum-product algorithm

Recap of Hidden Markov Models
• First-order Markov chain generates hidden state sequence (known as

transition probabilities):

• A set of output probability distributions (one per state) converts state path

into sequence of observable symbols/vectors (known as emission

probabilities):

State transition Observation model

Can be e.g. Gaussian if x is continuous.

Conditional probability table if x is discrete.

In the last lecture you looked at six examples:

 Sampling (generating states & observations)

 Prediction of the next state(s) given the

current state (Example 2)

 Inferring the latent states behind an observed

sequence (Example 6)

We build on Example 6 today

Recap of Hidden Markov Models

Three problems
• The joint distribution over the observed- and latent variables is given by:

where are the model parameters.

Three problems and three solutions:

1. Computing probabilities of observed sequences: Forward-backward algorithm

2. Learning of parameters: Baum-Welch algorithm

3. Inference of hidden state sequences: Viterbi algorithm

Viterbi algorithm application:

Casing Running

www.youtube.com/watch?v=F-HrLO5m_-s

https://www.youtube.com/watch?v=F-HrLO5m_-s

Outline

• HMM learning and inference:

1) Probability of an observed data sequence

2) Learning the model parameters

3) Inferring the most likely state sequence

Three problems and three solutions:

1. Computing probabilities of observed sequences: Forward-backward algorithm

2. Learning of parameters: Baum-Welch algorithm

3. Inference of hidden state sequences: Viterbi algorithm

Maximum Likelihood for the HMM

• We observe a dataset X = {x1,…,xN}.

• The goal is to determine model parameters

• The probability of an observed sequence takes the form:

• Recall that, in contrast to mixture models, the joint distribution p(X,Z | µ)

does not factorize over n.

• It looks hard: N variables, each of which has K states. Hence KN total paths.

Probability of an Observed Sequence
• Recalling slides 22-23 from Thursday (lecture 19), probabilities factorize:

• Dynamic Programming: By moving the summations inside, we can save a

lot of work.

EM algorithm for HMMs: overview
• We cannot perform direct maximization (no closed-form solution):

• EM algorithm: we will derive an efficient algorithm for maximizing the

likelihood function in HMMs (and, later, in linear state-space models).

• E-step: Compute the posterior distribution over latent variables:

• M-step: Maximize the expected complete data log-likelihood:

• We will first look at the E-step: Computing the true posterior distribution over

the state paths.

• If we knew the true state path, then ML parameter estimation would be trivial.

Inference of Hidden States
• We want to estimate the hidden states given observations. To start with,

let us estimate a single hidden state:

• Using the conditional-independence property, we obtain:

Inference of Hidden States
• Hence:

The joint probability of observing all

of the data up to time n, and zn.

The conditional probability of all

future data from time n+1 to N.

• Each α(zn) and β(zn) represent a set of K numbers, one for each of the

possible settings of the 1-of-K binary vector zn.

• We will derive an efficient recursive algorithm, known as the alpha-beta

recursion, or forward-backward algorithm.

The Forward (α) Recursion
• The forward recursion:

• Note that:

• This enables us to easily (cheaply) compute the desired likelihood.

Computational cost

scales as O(K2).

The Forward (α) Recursion

Exponentially many paths. At each node, sum up the values

of all incoming paths.

• The forward recursion:

• This is exactly dynamic programming.

The Forward (α) Recursion
• Illustration of the forward recursion

• The initial condition is given by:

Here α(zn,1) is obtained by:

• Taking the elements α(zn-1,j)

• Summing them up with weights Aj1,

corresponding to p(zn | zn-1)

• Multiplying by the data contribution

p(xn | zn,1).

The Backward (β) Recursion
• There is also a simple recursion for β(zn):

The Backward (β) Recursion
• Illustration of the backward recursion

• Initial condition:

• Hence:

The Backward (β) Recursion
• α(znk) gives total inflow of probability to node (n,k).

• β(znk) gives total outflow of probability.

• In fact, we can do one forward pass to compute all the α(zn) and one

backward pass to compute all the β(zn) and then compute any γ(zn) we

want. Total cost is O(K2N).

Computing Likelihood
• Note that

• We can compute the likelihood at any time using α-β recursion:

• In the forward calculation we proposed originally, we did this at the final

time step n = N.

because β(zn)=1.

• Monitoring this quantity is a good way to check for convergence during EM

Two-Frame Inference
• We will also need the cross-time statistics for adjacent time steps:

• This is a K x K matrix with elements (i,j) representing the expected number of

transitions from state i to state j that begin at time n-1, given all the

observations.

• Whereas γ is the marginal posterior distribution of a latent variable, ξ is the joint

posterior distribution of two successive latent variables

• It can be computed with the

same α- and β recursions.

Outline

• HMM learning and inference:

1) Probability of an observed data sequence

2) Learning the model parameters

3) Inferring the most likely state sequence

Three problems and three solutions:

1. Computing probabilities of observed sequences: Forward-backward algorithm

2. Learning of parameters: Baum-Welch algorithm

3. Inference of hidden state sequences: Viterbi algorith

The second problem: EM algorithm
• Intuition: if only we knew the true state path then ML parameter estimation

would be trivial.

• E-step: Compute the posterior distribution over the state path using α-β

recursion (dynamic programming):

• M-step: Maximize the expected complete data log-likelihood (parameter re-

estimation):

• In general, finding the ML parameters is

NP hard, so initial conditions matter a lot

• We then iterate. This is also known as a Baum-Welch algorithm (that is, EM

applied to HMMs).

Complete Data Log-likelihood
• The complete data log-likelihood takes the form:

transition model observation model

Expected Complete Data Log-likelihood

• The complete data log-likelihood takes the form:

• In the M-step, we optimize Q with respect to parameters

• Recall that in the E-step, we evaluate:

Parameter Estimation: π and A

• Initial state distribution: Using Lagrange multipliers, the expected number

of times in state k at time 1 is:

• Note that any elements of π or A that initially are set to zero will remain zero

in subsequent EM updates.

• Expected number of transitions from state j to k which begin at time n-1:

and the estimated transition probabilities work out to be:

• The EM algorithm must be initialized by choosing starting values for π and A.

Parameter Estimation: Emission Model

• For the case of discrete multinomial observed variables, the observation

model takes the form:

• And the corresponding M-step update:

• For the case of the Gaussian emission model:

• And the corresponding M-step updates:
Same as fitting a Gaussian

mixture model.

Same as fitting Bernoulli

mixture model.

Remember:

Outline

• HMM learning and inference:

1) Probability of an observed data sequence

2) Learning the model parameters

3) Inferring the most likely state sequence

Three problems and three solutions:

1. Computing probabilities of observed sequences: Forward-backward algorithm

2. Learning of parameters: Baum-Welch algorithm

3. Inference of hidden state sequences: Viterbi algorithm

The third problem: Viterbi Decoding

• The numbers γ(zn) above gave the probability distribution over all states at

any time.

• By choosing the state γ*(zn) with the largest probability at each time, we

can make an “average” state path. This is the path with the maximum

expected number of correct states.

• To find the single best path, we do Viterbi decoding which is a dynamic

programming algorithm applied to this problem.

• The recursions look the same, except with ‘max’ instead of .

• There is also a modified EM (Baum-Welch) training based on the Viterbi

decoding. Like K-means instead of mixtures of Gaussians.

• Same dynamic programming trick: instead of summing, we keep the term

with the highest value at each node.

Viterbi Decoding

• A fragment of the HMM lattice showing two possible paths:

• Viterbi decoding efficiently determines the most probable path from the

exponentially many possibilities.

• The probability of each path is given by the product of the elements of the

transition matrix Ajk, along with the emission probabilities associated with

each node in the path.

Using HMMs for Recognition

• We can use HMMs for recognition by:

- Training one HMM for each class (requires labelled training data)

- Evaluating the probability of an unknown sequence under each HMM

- Classifying the unknown sequence by choosing an HMM with highest likelihood

• This requires the solution of two problems:

- Given a model, evaluate the probability of a sequence.

(We can do this exactly and efficiently.)

- Given some training sequences, estimate the model parameters.

(We can find the local maximum using EM.)

Autoregressive HMMs

• One limitation of the standard HMM is that it is poor at capturing long-

range correlations between observations, as these have to be mediated

via the first order Markov chain of hidden states.

• Autoregressive HMM: The distribution over xn depends also on a subset of

previous observations.

• The number of additional links must be limited to avoid an excessive

number of free parameters.

• The graphical model framework motivates a number of different models

based on HMMs.

Bonus

Outline

• HMM learning and inference:

1) Probability of an observed data sequence

2) Learning the model parameters

3) Inferring the most likely state sequence

• Thursday: Message passing

• Introduction

• Sum-product algorithm

