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Abstract. We use provenance graphs to solve a problem within incentive en-
gineering: motivating humans to accept proposals generated by agents. Across
several provenance graphs created within the HAC-ER disaster-management sys-
tem, we ran retrospectively a bespoke algorithm for subgraph matching in order
to extract narrative information from the provenance data. The output of the al-
gorithm comprised a series of text messages which, had they been generated at
the time of the disaster trial, would have been transmissable with the specific
intention of encouraging participants not to reject certain tasks.

The algorithm found all expected subgraphs within the provenance graphs,
on an any-time basis and in a time linearly proportional to the number of nodes.
Our algorithm is extendable to other situations in which agents present tasks to
humans.

Keywords: incentive engineering, subgraph matching, task allocation, human-
agent collectives, provenance graphs, disaster management

1 Introduction

We use an accountable information infrastructure based on provenance graphs [6] record-
ing the formation of human-agent collectives (HACs) [7] to solve a problem within
incentive engineering, namely motivating participants to accept proposed tasks.

One of three key findings of a recent article in disaster management was that par-
ticular task allocations suggested to people by a centralized planning agent “may need
particular support” in order to succeed; the authors recognized “the need to ensure the
agent’s recommendations come with proper explanations in order to be trusted and fur-
ther augment their capability” [15]. We propose that such explanations can result from
the systematic interpretation of provenance graphs, leading to automatic generation of
output in the form of messages to participants, and other results leveraging a historical
narrative that humans can understand and accept. This helps to mitigate, for example,
the tendency of some participants to favour joint tasks with those who are merely stand-
ing nearby.

To this end, subgraph-matching algorithms have the capability to translate prove-
nance graphs into incentivizing messages to participants, where here a subgraph is a
connected, smaller graph within our provenance graphs (one provenance graph exists
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per scenario executed, usually over the course of 20-30 minutes). Central to this ca-
pability is the fact that certain important forms of incentivization rely on a sense of
historical flow in the tasks undertaken within HACs: people are more willing to accept
a task if they perceive it as fitting within a meaningful personalized context.

The main contribution of this paper is to develop a computationally effective method
for engineering incentives in HACs. The generic nature of provenance data allows our
method to apply to a range of other applications, but in the present work we generate
an approach to messaging participants in an effort to improve the probability that task
allocations will be accepted.

2 Methods

This section describes how, across provenance graphs which were created within the
HAC-ER disaster-management system [14] (specifically, a beta version known as Atom-
icOrchid [15]), we ran retrospectively a bespoke algorithm for subgraph matching in
order to extract narrative information from the provenance data. The output of the al-
gorithm comprises a series of text messages which, if they were generated during a
disaster trial, would be transmissable with the specific intention of encouraging partici-
pants not to reject certain tasks.

2.1 Applying Incentive Theory to HAC-ER
In each HAC-ER disaster trial, the aim is to sequentially form pairs of complementarily
skilled responders (human participants) to travel together, pick up targets (there are four
types of target, none of which can be handled by a single responder), and deliver the tar-
gets to designated locations. The responders are then free to form new pairs to address
new targets. To facilitate the formation of pairs, a centralized planning agent provides
each unoccupied responder with a proposal consisting of a target plus a teammate. The
planning agent determines these proposals according to an algorithm optimizing for
global performance, but each responder is allowed to reject tasks they judge to be per-
sonally unfavourable — for example, the proposed target or the proposed teammate
might be deemed to be too far away.

A problem that has been encountered is that responders decide to accept or reject
tasks without necessarily knowing each task’s global significance or how personally
enjoyable it would be. Incentives would be desirable in certain cases, to increase the
acceptance rate particularly of the most useful tasks. Within the theory of incentives [8]
there are a number of ways of classifying how people can be motivated and in which
kinds of contexts, and increasingly researchers are considering how agents can guide
human choice-making (see [2] and the references therein). For HAC-ER, we consider in
Table 1 a 2×2 matrix describing non-exhaustively several types of incentive that could
be used to motivate responders.

In this work we focus on incentives which can easily be derived from a provenance
graph. The messages we generate thus fall within the four categories appearing in the
corresponding column of Table 1:

S1. Reporting previously completed similar task: “You have completed this type of
task before,” or “Your teammate has completed this type of task before.”
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S2. Reporting previously experienced geography: “The task is in a geographic re-
gion you have visited previously,” or “The task is in a geographic region your
teammate has visited previously.”

S3. Reporting previous joint success: “You have worked successfully with this re-
sponder before.”

S4. Reporting common experience with third parties: “You have each worked with
responder X before, successfully.” (Where X is outside of the currently proposed
pair of responders.)

Evident from these messages is the blurring of the line between the two rows of the
2×2 matrix; that is, there exist messages (such as those related to S1 or S2) which can
be considered hybrids of teammate-based and target-based incentives.

Easily derived from
a provenance graph

Requiring data beyond
a provenance graph

Based on the
target

• Reporting previously
completed similar task
• Reporting previously

experienced geography

• Reporting the global
importance of the task
• Reporting predicted oppor-

tunities to work in the
target’s geographic area

Based on the
responder

pair

• Reporting previous joint
success
• Reporting common exper-

ience with third parties

• Reporting predicted
opportunities to work
together in future
• Reporting the teammate’s

performance ranking
Table 1. Categorization of incentives for HAC-ER responders to accept tasks.

2.2 Subgraph Matching
Towards the task of summarizing important information from provenance graphs, recent
work has considered compressing such graphs via node aggregation and edge aggrega-
tion [12]. Here we instead seek to extract intact portions of a graph through subgraph
matching (also known as the subgraph isomorphism problem, on attributed relational
graphs), for which several algorithms exist [9]. The extension of pioneering work by
Ullmann in the 1970s [19] led to fast algorithms including QuickSI [17] and VF2 [1].
The latter was recently beaten by LAD [18], and in the present work we present an
algorithm which in Matlab runs more slowly than the LAD C code but, within our
application domain, scales more efficiently with graph size.

The algorithm is available for download at github.com/OxfordML/ENPG. For each
of the four types of incentive described in Section 2.1, a subgraph was defined with
which to query the provenance graph (the provenance graph itself and all four subgraphs
adopted the W3C standard PROV model [3,11]). In querying these subgraphs, success-
ful finds were tabulated and their parameters were used to generate messages. Recent
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work considered the (reversible) translation of provenance graphs into Controlled En-
glish [16], with each sentence representing one node or relationship; whereas, each of
our messages corresponds to several nodes and edges (a subgraph). A message template
for each of the four incentive types was created, with any blanks filled in by text ex-
tracted automatically from the successfully located subgraphs (this approach also lends
itself to straightforward one-off translation by designers to non-English languages if
required). Our subgraphs comprised between four and eleven nodes, and they are as
follows.

S1. Reporting previously completed similar task: Figure 1 gives the four-node prove-
nance subgraph required to generate the first type of incentive. The name of node
Agent1 equals the responder’s name and the name of node Entity4 contains a par-
ticular keyword (‘Safe’), as before. Node Entity2 was labelled in a simple prepro-
cessing step, of computational complexity linear in the number of graph nodes, to be a
‘useful’ instantiation of a responder. Usefulness was assessed by whether it represented
a responder and whether it was connected to at least one entity representing a target (see
Entity3). Node Entity4 contains a particular keyword (‘Safe’), indicating that the
target had been delivered successfully.

S2. Reporting previously experienced geography: Figure 2 gives the four-node prove-
nance subgraph required to generate the second type of incentive. The name of node
Agent1 equals either the responder’s name or the prospective teammate’s name. The
name of node Activity3 contains a particular keyword (‘PickUp’) to indicate that a
target had been picked up. The name of node Entity4 contains a term such as ‘An-
imal’, ‘Radioactive’, etc to indicate it represents a target. Node Entity2 is a useful
instantiation of the responder (the concept of useful instantiations that was defined for
the S1 subgraph is employed identically for all four subgraphs). The longitude and lati-
tude are read from the node attributes of Entity4, as these indicate the location of the
target that the responders would need to have reached in order to manage the pickup.
This location is then compared to the location of the proposed target in order to de-
termine whether they fall within the same geographic region; numerous methods are
suitable here but for simplicity we divide the HAC-ER area into two regions (‘East’
and ‘West’) based on longitude alone in order to determine whether the geography of
Entity4 matches that of the proposed new target.

S3. Reporting previous joint success: Figure 3 gives the six-node provenance sub-
graph required to generate the third type of incentive. The name of node Agent1 equals
the responder’s name, and the name of node Agent5 equals the prospective teammate’s
name. Nodes Entity2 and Entity4 are useful instantiations of these responders, as
described for S1. Node Entity6 contains a particular keyword (‘Safe’), indicating that
the target had been delivered successfully.

S4. Reporting common experience with third parties: Figure 4 gives the eleven-
node provenance subgraph required to generate the fourth type of incentive. The name
of node Agent1 equals the responder’s name, and the name of node Agent10 equals
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Fig. 1. The four-node subgraph to be
detected for incentive S1.

Fig. 2. The four-node subgraph to be
detected for incentive S2.

the prospective teammate’s name. Nodes Entity6 and Entity11 contain a particu-
lar keyword (‘Safe’), as before. Other nodes are also equivalent to those for incentive
subgraph S1.

Each of the four subgraphs was defined mathematically by a tuple H comprised of
four constituents:

– An m ×m adjacency matrix H in which the 1’s were replaced with codified edge
attributes, e.g. ‘8’ for a PROV specializationOf

– An m-vector t listing codified node types, e.g. ‘1’ for a PROV entity
– A set of m strings N listing the names of each node, e.g. an agent might be called

‘medic95’
– A set of string pairs,W , with each pair giving the type of node attribute (e.g. ‘lon-

gitude’) and its value (e.g. ‘-1.18’ in degrees from the prime meridian)

The assignment of node types and edge attributes is described further in the ap-
pendix. The computer code is designed for application to provenance graphs in order to
find simple subgraphs that can be expressed as tree structures (acyclic graphs). We ig-
nored edge directionality in the provenance graphs. Explicitly stating the directionality
was not required in any instance of relevance to current purposes, since directional-
ity can be inferred using the edge attributes and node types; thus it was acceptable to
convert the provenance graph and the four subgraphs to undirected graphs. Even for a
simple Entity-wasDerivedFrom-Entity subgraph, where directionality would seem to be
important, any ambiguity can be resolved by using node names and/or node attributes
to help define the subgraphs. The advantage of ignoring edge directionality lies in al-
lowing the algorithm to operate on a symmetric adjacency matrix, reducing its run time.
This restriction could be relaxed if required.
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Fig. 3. The six-node subgraph to be detected for incentive S3.

Fig. 4. The eleven-node subgraph to be detected for incentive S4.
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With the n-node provenance graph and m-node subgraphs defined (253 ≤ n ≤
2098, 4 ≤ m ≤ 11), the code called a recursive function to explore simultaneously the
nodes of the provenance graph and of each subgraph, terminating with an exhaustive list
of all matches of the subgraph within the graph. Pseudocode is given in Algorithm 1.
The function is called with G andH containing within them static information about the
provenance graph and the subgraph, where H is defined earlier in this section and G is
defined similarly (its adjacency matrix is G). The m-vector p is initially comprised of
zeros except for the first element, which is set to a node index from G. If the function
call is successful, p will fill up with other indices to nodes in G, until the complete m-
node subgraph is specified. The function is intended to be called n times, each with a
different starting node within G. The function returns two outputs: the set of subgraphs
Y that have been identified so far (each being a valid configuration of p), and a success
code c which is 1 if at least one additional subgraph is being returned, or 0 otherwise.

The code was executed on seven provenance graphs collected during HAC-ER tri-
als in November-December 2012 and in July-August 2014. Each trial comprised one
computer agent directing six to eleven participants who completed a total of between
four and sixteen tasks. The graph statistics are described in Table 2; graph density is
defined as the number of directed edges divided by n(n− 1).

Algorithm 1 Identify in a provenance graph G all instances of a particular subgraphH
1: function FINDSUBGRAPHS (p,G,H)
2: if p(i) > 0 ∀i then return (p, 1)
3: else
4: Y ← ∅, c← 0
5: h← index of first zero entity in p
6: for {i|p(i) > 0} do
7: for each neighbour g of the p(i)th node of G do
8: if g’s node type = t(h) AND g’s name = N (h) AND
9: edge attributes between nodes g and p(h) ⊇ H(h, i) AND

10: attributes of node g ⊇ W(h) then
11: p(h)← g
12: (X, r)← FindSubgraphs (p,G,H)
13: if r = 1 then
14: Y ← Y ∪X
15: c← 1
16: end if
17: end if
18: end for
19: end for
20: return (Y, c)
21: end if
22: end function
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Graph name Number of
nodes

Number of
edges Density Number of

agent nodes
A 253 592 1.86% 12
B 875 2069 0.54% 7
C 1359 3279 0.36% 9
D 1485 3562 0.32% 9
E 1682 4173 0.30% 11
F 1784 4270 0.27% 7
G 2098 5142 0.23% 10

Table 2. Statistics for the seven provenance graphs under study. The number of agent nodes
equals the number of human participants plus one for the central planning agent.

Graph Time (s)
Number of subgraphs detected

S1 S2 S3 S4
A 0.3 8 8 4 0
B 1.9 16 20 8 0
C 4.8 24 24 12 26
D 6.1 32 32 16 24
E 5.4 18 22 9 13
F 3.6 16 16 8 10
G 6.2 22 26 11 13

Table 3. Results for the seven provenance graphs under study. The detection rate was 100%.

3 Results

For each of the seven graphs, subgraphs were detected and the corresponding messages
listed in Section 2.1 were generated. The number of instances of each subgraph are
recorded in Table 3, along with the CPU time required to find them. Each of these times
represents the average over five runs on an Intelr CoreTM2 Duo (2.66 GHz) desktop
computer. The reported subgraphs represented 100% of the instances expected after
manual inspection of the provenance graphs using ProvStore visualization software [6].

The number of S1 subgraphs was consistently twice that of S3 subgraphs, owing
to the nature of what the two subgraphs represented: each successfully delivered target
(Entity4 in Figure 1 or Entity6 in Figure 3) corresponded to one instance of the
S3 subgraph and to two instances of the S1 subgraph. The number of S2 subgraphs
was usually the same as that of S1 subgraphs, but in three cases (B, E, and F) it was
higher. This was due to the fact that in some cases a target would be picked up but
not delivered — i.e. some tasks were incomplete. The number of S4 subgraphs was
not very dependent on the numbers found for the other three subgraphs, as it indicated
mainly the extent to which responders moved from one team to another. For each of the
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two smallest provenance graphs (A and B), the HAC-ER trial evidently had not been
conducive to team changes, and hence zero instances of S4 were detected.

Although the CPU time rose erratically with the number of nodes, the trend overall
was linear. It would be almost exactly linear for sparse random graphs, as the compu-
tational complexity of our algorithm is O(n). The densities of the seven provenance
graphs were very low, and each graph contained significant structure — for example,
one agent node had over 250 edges — which explains the erratic rise, i.e. the high de-
viations (residuals) from a line of best fit. In a given graph, artificially reducing the
number of nodes (removing leaves first, in order to simulate dynamics in reverse) also
demonstrated a linear trend — see the solid dot-markered line in Figure 5. The open
circle-markered line in the same plot show runtimes of LAD [18], for comparison. LAD
was faster but in the figure both lines have been normalized to have a mean of unity,
since our algorithm was implemented in Matlab only and LAD is available in C only.
The supralinear scaling of LAD represents a potential concern for larger provenance
graphs.

The CPU time is also a function of each subgraph’s topological structure and the
specifications for its nodes and edges. Although an initial inspection of Algorithm 1 re-
veals that the complexity isO(m!) in the worst case, in practice it is substantially better
for provenance graphs when the information about node attributes and edge attributes
is used to prune options at each step. To demonstrate the scalability of the algorithm,
we artificially reduced the number of nodes in the S4 subgraph, decrementing progres-
sively from 11 to 2, to discover that the algorithm was approximately O(m). However,
there is no simple way to state the dependence of complexity upon m in the general
case.

Fig. 5. The time required to find subgraphs in graph G (see Tables 2 and 3) or in smaller versions
of G. The blue, open circle-markered line represents results from the authors’ algorithm. The red,
solid dot-markered line gives results from LAD [18]. Each line has been normalized to have a
mean of unity.
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4 Discussion

Within the subdiscipline of organizational behaviour known as incentive engineering,
there is growing scope to use the information infrastructures emerging from the science
of HACs. We have initiated this by providing viable feedback mechanisms to allow in-
centivization through interaction with agents and information sources. Namely we have
made use of a system which captures human actions and decisions to ensure account-
ability, as a means to additionally feed information back to players with the objective
of improving task-acceptance rates.

Our algorithm was successfully able to find all the expected subgraphs within HAC-
ER provenance graphs and to generate a variety of meaningful messages on an any-time
basis, i.e. from whatever provenance data had been collected up to the point of execu-
tion. Since the computational complexity for subgraph matching with homogeneous
nodes and edges is NP-hard, we are particularly pleased that the algorithm scaled so
well by taking into consideration the rich information available in provenance-graph
nodes and edges. We have allowed subgraphs to be discovered in linear-order time.

The impact of the generated messages has not been optimized through experimental
validation: until now, our focus has been the more application-agnostic aim of providing
a mechanism to aid researchers situated at the intersection of incentive engineering
and HACs [13]. We seek collaboration with those working in disaster management
or any other application area who wish to apply this method in order to increase the
task-acceptance rate among their participants. We note that subgraphs S3 and S4 are
potentially suited to incentive networks [10] in which players practice directed altruism,
and separately that crowdsourcing platforms can act as testbenches for incentivization
mechanisms [4].

Regarding theoretical extensions of the work in future, we are considering the fol-
lowing three ideas: (a) incentives can result from reasoning mechanisms that exploit
trust at the same time as provenance information — specifically, task-allocation pro-
posals can be accompanied by information from trust models of the humans and agents
involved; (b) graph compression could be achieved using spectral methods, extracting
‘eigenprovenance’ in an unsupervised learning methodology rather than one relying on
predetermined subgraphs; (c) statistical classification techniques and other analytics-
based methods [5] can be brought to bear on the issue of validating which of the four
types of incentive are useful under which circumstances.
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Appendix: Codifying the PROV data

Values for the node-type encoding appear in Table 4. For efficiency of programming, it
is possible to extend the table to include more specialized classes of these three cases.
For example, we found it useful to assign a ‘4’ for each entity representing a target,
and ‘5’ for each entity representing a useful agent instantiation (these concepts are
elaborated in Section 2.2).

Values for the edge-attribute encoding appear in Table 5. The edge-attribute num-
bering system facilitates binary-coding. For example, in adjacency matrix G, if the ith
provenance node is connected to the jth provenance node by a SPECIALIZATION
edge and a DERIVATION edge, G(i, j) = 24. This system simplifies the ⊇ operator in
Algorithm 1.

Although two nodes in any of our provenance graphs can be connected by more
than one type of edge, our subgraph-matching algorithm is written in such a way that it
is not possible to specify multiple edges between two nodes within the query subgraph
itself. This is not a practical limitation, since the designer of the subgraph can always
choose its nodes and edges in such a way that only one critical edge need be specified.
If additional edges occur in the provenance graph itself they are ignored during the
subgraph query so as not to overlook any matches.

Node type Value
ENTITY 1

ACTIVITY 2
AGENT 3

Table 4. Coded values for the three types of
provenance node.

Edge type Value
INFLUENCE 1
ALTERNATE 2

MENTION 4
SPECIALIZATION 8

DERIVATION 16
MEMBERSHIP 32

COMMUNICATION 64
START 128
END 256

USAGE 512
GENERATION 1024

INVALIDATION 2048
DELEGATION 4096
ASSOCIATION 8192
ATTRIBUTION 16384

Table 5. Coded values for the fourteen types of
provenance edge attribute.




