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Abstract— We present a method of dynamic coalition for-
mation (DCF) in sensor networks to achieve well-informed
sensor-target allocations. Forecasts of target movements are
incorporated when choosing sensor states, as is a memory of
target observation. The algorithm can be run in a centralized
or decentralized configuration; the latter relies on local message
passing in the form of the max-sum algorithm. We show how
the DCF algorithm has been applied to synthetic and real data.

I. INTRODUCTION

Our work contributes to a sensor-management topic known

as sensor resource allocation (synonyms include “sensor

behaviour assignment”, “sensor action planning”, “sensor

selection”, and “sensor-to-task assignment” [8], [12]). Al-

though this topic dates to at least the 1970s [11], little has

been published on decentralized dynamic allocation. We pro-

pose a general framework; the results have implications out-

side the sensing community, as sensor networks are merely

one of the classic applications of multi-agent systems [15].

Other applications that might benefit from our approach are

aircraft-crew scheduling and disaster management (including

emergency medical response planning), and problems with

similarly complex dynamics.

In such problems, approaches more exhaustive than the

“greedy” allocation algorithms preferred in simple search

spaces may be called for, in order to avoid overlooking

optimal solutions. One of the chief drawbacks of these

approaches, however, is that when the required temporal

resolution of a forecast (over which the environment is

predicted and a system’s response simulated) is too fine, a

combinatorial explosion occurs: if approximately G actions

are available to a system at each of W time steps, the number

of unique action sequences to consider is approximately

O(GW ). To solve this issue, we consider the paradigm (e.g.

see Konishi and Ray [7]) of weighing immediate coalitional

changes against delayed coalitional changes:

“A process of coalition formation is an equilibrium

if at any date and at any going state, a coalitional

move to some other state can be ‘justified’ by the

very same scheme applied in future: the coalition

that moves must have higher present value (starting

from the state it moves to) for each of its members,

compared to (one-period) inaction under the going

state.” [7]

* M. Ebden and S. Roberts are with the Department of Engineer-
ing Science, University of Oxford, Oxford, OX1 3PJ, United Kingdom.
mark.ebden@eng.ox.ac.uk Phone: +44-1865-283391.

** M. Briers is with QinetiQ Ltd, Malvern Technology Centre, St.
Andrews Road, Malvern, WR14 3PS, United Kingdom.

Thus we have adapted a principle of dynamic coalition

formation (DCF) to the case of finding optimal sensor

allocations. We describe a general solution method for other

environments with complex dynamics.

The sensors in the specific problem discussed in this

paper represent a possibly heterogenous mix of infrared cam-

eras, video cameras, multispectral imaging, radar, and other

technology. The sensors are tasked with observing moving

objects, or targets. Ordinarily, three aspects of interest are

target position, velocity, and identity classification (where

the identity may be one of vehicle, trespasser, etc.), but for

simplicity here we assume the first two are given: i.e. a

surveillance sensor such as a large-scale surface-movement

radar provides suitably accurate positions and velocities.

Most sensors have a limited field of view (usually <180◦)

at any one time; therefore, if a sensor can rotate, its orienta-

tion ought to be coordinated with those of its neighbours.

Field of view and orientation are the two state variables

considered in this work, but these are easily adjustable to

model other systems.

If an allocation algorithm is run periodically, the as-

signments will gradually change as targets move. Without

forecasting, this process is simply a non-dynamic algorithm

being run many times. Our aim is to consider algorithms

which forecast target movements when determining the cur-

rent allocations, and which take into account the time delays

associated with the state changes of sensors. In this way, we

can coordinate time-dependent coalitional activities.

As a simple example, consider the three sensors in Fig. 1a,

observing four targets. Imagine that a surveillance sensor (not

shown) identifies a new target (α) approaching rapidly from

the east. A non-dynamic algorithm might try to reallocate

the sensors based largely on sensor-target proximity (see

Fig. 1b). However, during the time that Sensors 2 and 3

are rotating, two targets are not being observed. Thus, a

good dynamic algorithm might instead allocate Sensor 1

to α, while preparing Sensor 3 for a future reallocation

by adjusting its angle slightly (see Fig. 1c). The DCF

algorithm which we have developed is capable of yielding

this type of improvement, and other benefits of dynamic

coordination. The sensor-network framework we consider is

not a constraint on our approach; it is merely used to place

the algorithm’s operations into a meaningful context.

We will begin by describing a standard message-passing

approach through which the sensors communicate. Sec-

tion III describes the DCF problem they are to solve, and our

solution for the case of simple forecasts of the environment

(only one time point in the future). Section IV outlines our

method of solving the problem for arbitrarily lengthy and
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Fig. 1. An example of how a dynamic algorithm can react with foresight
to a changing coalition formation environment. (a) Grey circles are targets
to observe, and the three black chevrons are sensors with the capacity to
rotate slowly. Target α has recently appeared. (b) A non-dynamic algorithm
might aim to assign Sensor 3 to α. (c) A dynamic algorithm might instead
assign Sensor 1 to α, and prepare Sensor 3 for a future reassignment.

complex forecasts. The method is validated in Section V

with examples, and Section VI closes with a discussion.

II. MESSAGE PASSING

Our decentralized approach relies on local message pass-

ing, a technique which has been used successfully in in-

ference problems [13] but to our knowledge has not yet

been applied to the problem of dynamic sensor allocation.

Information is shared locally among agents in an effort

to solve a global problem [10]. Here, this problem is to

discover, in a sensor network, which states the sensors should

assume in order to maximize the expected number of targets

identified in a given upcoming time window; however, a

similar framework could be used on any multi-agent system

with tasks to be assigned.

We have chosen to use message passing to decentralize the

problem chiefly because large sensor networks tend to burden

the allocation algorithm with a combinatorial explosion.

The message-passing technique ensures that the amount of

information to compute remains manageable for even the

vastest networks, provided the connectedness is realistically

limited — e.g. sensors on opposite sides of the network

cannot share targets.

Our work is based on factor graphs and an extension of the

sum-product algorithm (also known as belief propagation;

see [9] for a tutorial) called the max-sum algorithm. Farinelli

et al. [4] pioneered the application of this algorithm in multi-

agent coordination. The authors showed that their method

works well in graph-colouring problems and implemented it

in hardware successfully using wireless embedded devices.

The method is extensible to many different types of dis-

tributed problems.

In our problem, sensors in a network are deemed to be

neighbours when they have the ability to bring at least one

common target within range — even if the sensors are not

currently allocated to it at a given moment. The state of

the nth sensor is described by a variable, xn, which acts

as an index pointing to a complete state description. The

set of states in the mth sensor’s neighbourhood (including

itself) at any one time is xm. (For example, in a three-

sensor network, it may be that x1 = {x1, x2}. Finally, the

utility of each sensor is described by a factor, U(xm). For

example, U(x1) might indicate that the first of two sensors is

expected to identify a total of three targets in the upcoming

time window; non-integer estimates are also permitted. When

several sensors point at the same target, the utility is divided

equally. Our notation for partitioning each sensor into one

variable and one factor is broadly consistent with that of

Farinelli et al. [4]. Our method of selecting candidate states

xn and of calculating the factors U(xm) is described in the

next two sections.

Each variable in the network communicates bidirection-

ally with its associated factor as well as the factors in

neighbouring sensors, until the entire network converges. A

simplistic description is that, before evaluating a possible

coalition switch, a sensor receives a report from each of its

neighbours on the expected ramifications in the neighbours’

neighbourhoods; these reports are propagated in the form of

Q and R messages.

More specifically, the set of factors connected to the nth

variable is referred to as M(n), and the set of variables

connected to the mth factor as N (m). A message Q sent

from the nth variable to the mth factor is composed as

follows:

Qn→m(xn) = αnm +
∑

m′∈M(n)\m

Rm′→n(xn), (1)

where Rm′→n(xn) = 0 for the first iteration, and the scalar

αnm, initially zero, is updated after each iteration such that
∑

xn

Qn→m(xn) = 0. (2)

In return, messages from each factor to all of its neighbouring

variables are then reciprocated. The message R from the mth

factor to the nth variable is composed as follows:

Rm→n(xn) = max
{xn′ :n′∈N (m)\n}

[

U(xm) + (3)

∑

n′′∈N (m)\n

Qn′′→m(xn′′)

]

.

It can be shown [4] that after convergence, the network’s

total utility or system welfare V =
∑

U(xm) is maximized

approximately when each sensor assumes its optimal state

x∗
n given by

x∗
n = argmax

xn

[

∑

m∈M(n)

Rm→n(xn)

]

. (4)

The maximized utility is guaranteed to be optimal only when
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the sensors are connected as an “acyclic graph”, e.g. as a tree.

We emphasize that the dynamic coalition formation algo-

rithm can be applied in a centralized or decentralized con-

figuration; the use of local message passing is an attractive

option primarily for problems which scale poorly with the

number of sensors/agents.

III. DYNAMIC COALITION FORMATION

To represent the problem of allocating I sensors to J

targets, we build on the coalition-formation notation of Dang

et al. [2] and Fernández et al. [5]. At each discrete time step

τ , the ith sensor in I = {1, 2, . . . , i, . . . , I} can assume

any of a number of states xi to observe one or more of the

targets T = {t1, t2, . . . , tj , . . . , tJ}. In doing so it incurs

a cost ci(τ), which ordinarily would reflect anything from

electrical power to a penalty for assuming useless states, and

here ci(τ) reflects only the time lost when changing from

one state to another. All sensors observing target tj belong

to the coalition Cj(τ) ⊆ I, which has a value, v(Cj(τ), tj),
indicating how useful it is to observe a particular target with

a particular coalition. The set of all J coalitions existing at

time τ is the coalition structure, CS = {C1(τ), . . . , CJ(τ)}.

System welfare, introduced in the previous section, is

calculated as

V (τ) =
∑

tj∈T

v
(

Cj(τ), tj
)

−
∑

i∈I

ci(τ). (5)

The optimal coalition structure, CS∗, is then argmax
CS∈Γ(I,T )

V (τ),

where Γ(I, T ) is the set of all possible coalition structures.

At least two enhancements to this model should be made

for dynamic environments. First, sensors require time to

be reallocated, and our approach is to affect ci(τ) by

considering the impact of the state transition time. Second,

targets which have been previously identified may be of

lesser interest to observe than unidentified targets. This will

be addressed by making v(Cj(τ), tj) dependent on events

which occurred in the past; i.e. the value of a coalition is

influenced by what information has been gleaned previously

from the environment.

A. Coalition Values

On a two-dimensional grid, the changing locations and

velocities of the J possibly heterogeneous targets T in-

troduced above are gradually made known at each time

τ . (These locations might be determined by a surveillance

sensor, as noted in the Introduction.) Recall that the I

sensors I observe the targets to gradually determine their

identities. For identification to occur, a target must lie within

a sensor’s (adjustable) sector-shaped area of observation. At

each time step, a sensor faces one of an infinite number of

orientations, and assumes one of an infinite number of fields

of view (affecting the degree of zoom, and represented here

as the central angle of the sensor’s observation sector), both

measured in radians.

If the jth target is moving with velocity υj(τ), and is

separated from the ith sensor by distance dij(τ), and the

sensor has field of view zi(τ) (measured in radians), then,

provided the target lies somewhere within the sensor’s ob-

servation sector, the chance that the target may be identified

within the current time step is expressed as

pij(τ) = pmax Ω
(

|υj(τ)|, υmax

)

Ω
(

dij(τ), dmax

)

· (6)

Ω
(

zi(τ), zimax + constant
)

where

Ω(a, amax) = sup

{

0,
2

1 + a
amax

− 1

}

. (7)

Hence the likelihood of a successful identification decreases

with the speed of a target, the sensor-target distance, and the

field of view of the sensor. The meanings of the parameters

υmax, dmax, and zimax are, respectively, the speed at which

a target becomes an unidentifiable blur, the distance at which

a target becomes an unidentifiable speck, and the widest

possible field of view a sensor can assume. pmax is the

highest possible probability of identification, which occurs

when the target velocity and separation are zero and the

sensor has zoomed maximally.

The value of a coalition, i.e. the overall probability of

identifying the jth target without consideration of costs, takes

into account simultaneously but independently all sensors in

its coalition:

v
(

Cj(τ)
)

= 1 −
∏

i∈Cj(τ)

[1 − pij(τ)] . (8)

The fairly basic scheme which we have used to describe

the general problem is easy to modify for a given actual sce-

nario. In particular, rather than treating each sensor’s contri-

bution independently, more sophisticated target identification

probability distributions may be used, e.g. distributions that

consider synergy among coalition members. Independence

among the time steps is also easy to remove, e.g. by

considering the duration of observation when calculating

v
(

Cj(τ), tj
)

.

B. Coalition Costs

During the time that the ith sensor moves from some

state xi = a to another state xi = b it is inactive for a

certain number of time units, e(a→b)i
. Sensors can follow

slow targets without penalty, i.e. a certain amount of sensor

rotation is permitted during each time step without affecting

the probabilities of target identification. The total number

of time units for which the sensor is inactive while moving

from state a to state b is

e(a→b)i
= sup

{

∆F|Fa − Fb|, ∆θθab − ∆0

}

(9)

where ∆F, ∆θ ≥ 0 are the per-radian penalties for field-of-

view and orientation adjustments, respectively; Fa and Fb

are fields of view; 0 ≤ θab ≤ 180◦ is the non-reflex angle

between the two sensor orientations; and ∆0 ≥ 0 is the angle

(in radians) which a sensor can rotate without penalty at each

time step.

In this manner, we have generalized the costs ci(τ) to

reflect not only coalition change (e.g. switching to observing
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a new target would often be associated with e(a→b)i
6= 0)

but also the ongoing costs of maintaining a coalition (e.g. if

a target is moving rapidly). A cost should reflect the actual

reduction in the probability of target identification; we have

shown elsewhere [3] that, for Ei(τ) < 1, the function which

maximizes target identification in a single time step is

ci(τ) =
∑

tj∈T

Ei(τ)pij(τ)
∏

h 6=i

{

1 − pij(τ)
[

1 − Eh(τ)
]}

(10)

where Ei(τ) is e(a→b)i
at time τ . This cost formula guar-

antees that the system welfare, given in Eq. (5), is equal to

the expected number of targets which will be identified in a

particular time step, after considering the effects of sensor

movement. Eq. (10) only addresses a single time step, and

for Ei(τ) & 1, naturally it becomes useful to take advantage

of longer forecasts when evaluating the system welfare. This

approach is the subject of the next section.

IV. LONG-TERM DYNAMIC COALITION FORMATION

Current positions and velocities are revealed to all sensors

at each time step τ , from which future values can be extrap-

olated. To handle the diversity of possible target dynamics,

a general tracking framework such as VS-IMM or JMLS [1]

would ordinarily be preferred; however, for simplicity we

currently employ a constant-velocity model to form these

projections. To account for the uncertainty, the expression

for pij(τ) is marginalized over the various probabilities in

the prediction, such as whether the target will fall in the

sensor’s field of view. A key feature of our work is that

extension of this time horizon arbitrarily into the future does

not cause a combinatorial explosion.

If the ith sensor is surrounded by Ji(τ) within-range tar-

gets (not necessarily visible simultaneously), and the sensor’s

field of view and orientation are adjustable with infinitesimal

resolution, then the number of possible different collections

(groupings) of the Ji(τ) targets is at most 1
2Ji(τ)[Ji(τ)+1].

(In other problems this expression is a factorial ”combi-

nation”, but here it is simplified by geometrical findings.)

Hence, among sensors I, a time window of width W units

corresponds to a search space of maximum size

1

2

W
∏

τ=1

{

∏

i∈I

[

Ji(τ)2 + Ji(τ)
]

}

, (11)

which is too vast to search exhaustively when W is large.

Our approach considers two time windows, of length W1 and

W2. The first is applied to rapidly find which sensor state

combinations sq ∈ s might be useful, and the second lever-

ages the delay paradigm from the Introduction to estimate the

effectiveness of each of those combinations sq, by counting

the number of target identifications expected if a “greedy”

algorithm were used for each of the W2 − 1 remaining time

steps.

The method is applied to each neighbourhood of sensors,

including only the targets applicable to that neighbourhood

during W1. The method, designed to not increase exponen-

tially in complexity with the length of the time horizon, is

as follows:

1) The first window size is set to

W1 =

⌈

sup
i,b

e(a→b)i

⌉

. (12)

Note that maximal e(a→b)i
corresponds to a rotation

of π radians or an extreme change in the field of view,

whichever takes longer.

2) The projected positions of the targets throughout this

window are assessed and standard deviations assigned,

using a constant-velocity model.

3) At each time step τ = {1, 2, . . . , W1}, and for each

sensor i: a) A list Ti(τ) = {ti1(τ), ti2(τ), ti3(τ), . . .}
of the Ji(τ) possible target collections visible to the

sensor is compiled by considering which targets can

be viewed simultaneously. Strictly speaking, nonzero

potential for viewing is considered, since the projected

target positions are only estimates.

b) For each collection tih(τ) ∈ Ti(τ), only the sensor

states xih(τ) which might allow the observation of this

collection are retained. Of these, two optimal sensor

states are isolated:

xip(τ) = argmax
xih(τ)

{

∑

tj∈tih(τ)

pij(τ)

}

(13)

xid(τ) = argmax
xih(τ)

{

∑

tj∈tih(τ)

pij(τ) · (14)

[

1 − inf(1, ea→sih
)
]

}

.

These two states represent the optimization of, respec-

tively: the probability of target identification, ignoring

the effects of sensor delay; and the actual probability

of target identification. If one of the maxima does not

exist, naturally only the remaining state — xip(τ) or

xid(τ) — is considered.

4) For each sensor, these optimal states are reduced in

number from a maximum of 2W1 (since there are 1

or 2 from each of the W1 time steps) to just one state

per collection. This is done by forecasting the perfor-

mance of each state with respect to its corresponding

collection, ignoring all other targets. In this manner,

an efficient search space {x′
i(τ)} is constructed for the

first time step for each sensor.

5) All factorial combinations sq ∈ s are constructed from

the elements in the various search spaces {x′
i(τ)}.

Then, for each sq, the system welfare in the first time

step, Vq(τ), is calculated by Eq. (5). This begins the

latter phase of the algorithm, in which the second

window is used. Setting W2 = 2W1 is sufficient since

for present purposes it is not necessary to observe

beyond twice the maximum sensor delay: events which

happen after this time can in every case be reacted to

in sufficient time. In fact, more accurately,

W2 =

⌈

2 sup
i,b

e(a→b)i

⌉

. (15)
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6) To calculate Vq total
(τ) = Vq(τ) + Vq(τ + 1) + . . . +

Vq(τ + w) + . . . + Vq(τ + W2 − 1), i.e. the sum of

the system welfares over the second time window, the

greedy algorithm is used, once per combination. (As

an aside, note that Vq(τ + w) affects Vq(τ + w + 1)
since the fact that a target might be detected in one

time step decreases the probability it will be detected

in a subsequent time step.) The greedy algorithm runs

as follows:

a) At the wth time step of the window, beginning with

w = 1, the possible state combinations are computed

as per Step 3.

b) Two assumptions are made for the subsequent time

steps: firstly, although pij(τ + w) will change and

its changes will be tracked, the selected sensor-target

allocations are temporarily assumed to remain the

best choices throughout the window. Secondly, each

sensor is able to observe the targets in its collection

with negligible adjustments (i.e. little time is lost in

changing states, once the change at the (τ + w)th
time step is made). These assumptions are what justify

the use of a “greedy” algorithm, i.e. the algorithm is

preparing to choose a single form of state change, as

opposed to exploring all possible state changes as was

done in the first time step.

c) A state combination is chosen to maximize the sum

of the system welfares for all remaining time steps

in the window, i.e. Vq
′(τ + w) + Vq

′(τ + w + 1) +
. . . + Vq

′(τ + W2 − 1), where the primes (′) denote

the fact that the system welfares are only temporarily

approximated via the greedy algorithm. Vq(τ+w) is set

to the corresponding value of Vq
′(τ + w). The sensor

movement is simulated.

d) Steps 6.a) through c) are repeated for the (τ + w +
1)th time step and so on, until the end of the time

window (w = W2 − 1).

The results of the above algorithm are exchanged using local

messages as described in Section II. The candidate values of

xn in Eqs. (1–4) are given by {x′
i(τ)} in Step 4 for i = n,

and the utilities U(xm) in Eq. (4) are given by Vq total
(τ) for

sq = xm.

V. RESULTS

Messages converge typically after just one or two itera-

tions. (In graph-colouring problems, where the optimization

landscape is coarser, convergence often takes longer.)

In the first simulation, we reproduce the problem of Fig. 1.

Sensors have fixed fields of view (120◦) and slow rotation

speeds. Sensor 3 cannot rotate in time to observe α. Hence,

Sensor 1, which is already pointing in approximately the

correct direction, adjusts its angle slightly in anticipation of

the target (see Fig. 1b). Sensor 3 also adjusts its angle in

preparation for observing α soon afterwards.

For the second simulation, real data was used as input.

First, a lightly trafficked hectare was observed using a

commercial off-the-shelf Navtec radar. Ranges and bearings

TABLE I

SENSOR CHARACTERISTICS IN THE SECOND SIMULATION.

Sensing range 0–20 m Max. targ. spd. 50 ms−1

Rotation range 0–360◦ Zoom range 20–90◦

Rotation speed 20◦s−1 Zoom speed 60◦s−1

of moving targets were collected at a sampling frequency of

1 Hz, which formed a database of 53 target trails.

At nearly all time coordinates, a maximum of only one tar-

get trail was visible. However, a dynamic algorithm is useful

primarily when multiple targets are visible simultaneously;

hence, offline, the targets’ time coordinates were artificially

translated so that exactly five targets were visible at any time.

Each data point collected from the offline tracking algo-

rithm consists of a 21-dimensional vector, whose components

are a concatenation of the following:

• A (scalar) time stamp

• A two-dimensional position vector, (x, y)
• A two-dimensional velocity vector, (vx, vy)
• A 4 × 4 covariance matrix, S, for {x, y, vx, vy}

S is used to compute uncertainty in future target positions.

Six fictitious sensors were simulated post hoc with char-

acteristics given in Table I. Where possible, these were taken

from a mix of commercially available cameras, including the

480TVL Pan/Tilt Dome Camera. The fictitious sensors were

positioned at locations near the areas with highest traffic.

Once per second during the 178 seconds of target activity,

the sensor-target allocations were decided using the DCF al-

gorithm. The total number of successful target identifications

during this period was recorded. This scenario was run 100

times and the median number of targets identified was 18

(range: 12–23).

The most important dynamic aspect of the algorithm

is the forecasting of expected target identifications over a

variable-length time window. This aspect was disabled, and

the resulting simple non-dynamic algorithm was run another

100 times. The median number of targets identified was 14

(range: 7–19).

The results from the dynamic and non-dynamic algorithms

are illustrated in Fig. 2. The notches on either side of the

boxes indicate the uncertainties in the medians: the fact

that the notches do not overlap vertically indicates that the

medians of the two groups differ at the 5% significance level.

Finally, we used the same database to test the ability of

the message-passing approach to find the globally optimal

solution. At each of the 178 time steps, we computed the

optimal sensor-target allocation using a centralized version

of the DCF algorithm. Results from the message-passing al-

gorithm precisely matched those of this centralized algorithm

at every time step. (In addition, the computation time was

found to be over 70% faster in the decentralized approach,

at 68 rather than 232 ms/step/sensor.)
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Fig. 2. A box-and-whiskers plot of the number of targets identified,
summarizing 100 runs of the non-dynamic and dynamic coalition formation
algorithms. Each box (hourglass shape) indicates the upper- and lower
quartiles and the median; the whiskers (T-shaped) extend to the extremal
data points, excluding outliers. (Outliers are data points separated from the
box by a distance of more than 1.5 times the interquartile range.)

VI. DISCUSSION

Xiong and Svensson [16] reviewed the field of sensor

management and framed their discussion, as some other

authors have, within the JDL model of data fusion [14].

Specifically, sensor management comprises “Level 4” in this

model. We have developed a Level-4 framework for the case

of forecasts of arbitrary complexity being available to inform

the allocation of sensors to targets. In a simulation based on

real target movements, this approach leads to an improve-

ment in the number of targets identified: approximately 18

rather than approximately 14. The extent of the improvement

is significantly dependent on the scenario, but is guaranteed

to be non-negative for the case of forecasts with correctly

estimated uncertainties.

Our contribution is extensible to other sensor-network

styles, such as cooperative unmanned vehicles, since the

action space can be expanded arbitrarily. Elsewhere, we

have explored the penalization of sensors for beginning and

ending the observation of targets, rather than for changing

their state; we have also developed the feature of identifying

historically quiet or busy areas to better inform the algorithm

and improve performance. Besides sensor networks, the

framework is applicable to other multi-agent systems.

We have so far considered only two of the possibly five

different time-varying parameters of interest when forming

coalitions, according to Klusch and Gerber [6]. These five

parameters are: the information available to sensors (e.g. the

appearance of a new target, as in Fig. 1); the tasks to be ac-

complished (e.g. the value of observing targets can change);

the computing resources; the number of sensors (e.g. some

sensors may become damaged or be switched off); and

the reliability of the sensors (e.g. as dictated by inclement

weather). Projected changes in computing resources have not

been explicitly taken into account in our algorithm since we

assume that each sensor has dedicated computing power. The

last two time-varying parameters are similar to one another

if the absence of a sensor is treated as simply a sensor

producing readings with zero confidence. Their impact might

be modelled via a more detailed calculation of v(Cj , tj), to

weight the sensor’s contributions by a confidence measure;

it is easy to adapt this to our configuration.

Future alternatives to the technology outlined in this paper

might be expected to fall into the following categories

of approach: search-based (of which ours is an exam-

ple), information-theoretic, decision-theoretic, fuzzy-logic,

or Markov-decision-problem approaches [16]. However, we

have demonstrated that a search-based approach yields ac-

curate solutions, and QinetiQ are currently investigating

physical implementations of the algorithm.
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