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Status dystonicus is a distinct state
characterized by pallidal beta-band activity

Arjun Balachandar 1,2,3,4,5, Lindsey M. Vogt 1, Karim Mithani1,
Sebastian C. Coleman1, Mark Ebden 1, Andrea Leblanc-Miller1, Sara Breitbart1,
Alfonso Fasano 2,3,4,6,7, Carolina Gorodetsky 1 & George M. Ibrahim 1

Status dystonicus (SD) is a poorly known neurological emergency requiring
urgent interventions, including deep brain stimulation (DBS) targeting the
globus pallidus interna (GPi). The sensing capabilities of DBS electrodes pro-
vide an opportunity to study the pathophysiology of SD. Here, we study local
field potentials (LFPs) from GPi-DBS electrodes implanted in a cohort of 10
children longitudinally during SD, recovery and relapse (recording range
11-1155 days). During SD, we report an increase in the periodic component of
the power spectrum within the beta-band along with increases in burst
amplitude compared to recordings in non-SD states. Furthermore, relapsed SD
is characterized by a return of excessive beta signatures. Beta-specific LFP
power is also significantly associatedwithworse quality-of-life scores (PedsQL,
R2 = 0.695). We identify circadian pallidal beta-band periodicity in one parti-
cipant with chronic narrowband beta-power recordings over months, with
significant increase in power during SD. These rare recordings in children with
SD point to excessive pallidal beta-band activity as a biomarker of SD. Our
findings further suggest that SD is a distinct state with important implications
for understanding dystonia pathophysiology, tracking dystonia states from
intracranial activity and potential adaptive DBS treatments.

Dystonia is a hyperkinetic movement disorder that presents with
sustained or intermittent muscle contractions leading to repetitive
twisting movements and/or abnormal postures1. Dystonia can be focal
(limited to one body part), segmental (affecting two or more adjacent
body parts) or generalized (involving most of the body), and ranges in
severity frommild to life-threatening. Status dystonicus (SD) is poorly
understood and represents the most severe form of dystonia, pre-
dominantly affecting children2,3. Refractory SD4,5, which persists
despite pharmacotherapy, can result in life-threatening consequences

including metabolic derangement, respiratory/bulbar dysfunction,
pain and fractures6, with mortality rates between 10–12.5%4,7.

Deep brain stimulation (DBS) of the globus pallidus interna (GPi)
is an effective and durable treatment for refractory SD5,8 that improves
survival and reverses refractory SD in over 90% of participants8–10. It is
generally safe and has been performed in children as young as 2 years
of age2,8. Early implantation and initiation of stimulation as an emer-
gency treatment for refractory SD8 is thought to be effective across
both inherited and acquired aetiologies of dystonia8,10,11.
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The pathophysiology of SD is currently poorly understood, and
there are no known markers that can identify transitions between a
baseline dystonic state (i.e., non-SD) and SD. Dystonia is a network dis-
order linked to pathological signaling between sensorimotor cortices,
the cerebellumand the basal ganglia12–15. The use of sensing-capableDBS
devices in pediatric dystonia has recently provided auniqueopportunity
to investigate intracranial correlates of SD through local field potentials
(LFPs) within the basal ganglia. Several oscillatory patterns within the
basal ganglia have been shown to characterize aberrant subcortical
networks linked to dystonia16,17. In adults with focal dystonia, low-
frequency theta to alpha-band (4-12Hz) LFP activity have been observed
in the GPi and subthalamic nucleus (STN)15–20. Faster oscillatory sig-
natures have been identified across other movement disorders, includ-
ing STNbeta-band (13-30Hz) activity in Parkinson’s disease (PD)21–23. The
substrates of the frequency-specific oscillatory activity are thought to be
bursting activity in the basal ganglia, which has been reported in adults
with dystonia and PD20,23–28. In addition, non-oscillatory or aperiodic
components of the power spectrum have also been thought to char-
acterize states of altered balance of inhibition and excitation in move-
ment disorders28–32. To date, the oscillatory and non-oscillatory
electrophysiological signatures of SD remain elusive.

Multi-scale dynamic changes in power spectral density (PSD)
estimates may also characterize pediatric dystonic states. Clinical
improvements in dystonia are often associated with sleep and/or
sedation4,5,7,33 and circadian patterns have been previously reported in
other movement disorders34–36, with pallidal beta-band power usually
decreasing at night in PD37. Circadian periodicity gleaned through
analysis of LFP activity has also been correlated to risk of worsening of
other neurological disorders, including epilepsy38 and neuropsychia-
tric disorders39. The multi-scale dynamics of LFPs in SD are unknown,
and although implanted devices are equipped with chronic narrow-
band sensing capabilities, they have yet to be leveraged to predict the
risk of transition to SD states.

Biomarkers to identify transition into SD are particularly critical
since children at risk often have chronic baseline dystonia outside of
the SD state, whichmaybedifficult to differentiate4,5,7. Indeed, children
with SD often experience relapses that can be difficult to identify at the
onset, but which necessitate urgent and significant increases in acute
management4,5,7. In addition to tracking of dystonia states, intracranial
biomarkers may inform the development of closed-loop adaptive DBS
(aDBS) algorithms that selectively modulate stimulation during such
pathological states, providing optimal stimulation when required and
reduced side effects and battery usage when not needed40–42 as pre-
viously studied in PD40–42 and adult dystonia24. The identification of SD-
specific intracranial biomarkers and their multi-scale dynamics43,44 are
therefore a necessary step before aDBS can be successfully imple-
mented for SD.

Our objective in this study was to identify intracranial neural bio-
markers of SD. We prospectively collected LFP timeseries longitudinally
across months-to-years in a unique and rare cohort of 10 pediatric dys-
tonia participants implanted with sensing-capable GPi DBS for SD. In
tandem, we collected detailed clinical outcome measures pertaining to
dystonia severity andhealth-relatedquality of life (HRQoL) at predefined
timepoints through the Child & Youth Comprehensive Longitudinal
Database for Deep Brain Stimulation (CHILD-DBS)45. We sought to
characterize GPi LFPs during SD and non-SD states based on oscillatory
(periodic) and aperiodic components of the power spectrum, correlat-
ing themwithHRQoL anddystonia severity.We leveraged the long-term
narrowband recording capability of the DBS system to monitor beta-
band power in one participant to GPi-circadian patterns rhythms in SD.
Finally, as a proof-of-concept towards future applications in aDBS, we
trained machine learning classifiers to predict dystonia states using LFP
data as features. Collectively, these analyses provide a demonstration of
GPi-LFPs across SD, recovery, and relapse, presenting avenues to
monitor and intervene in this rare life-threatening condition.

Results
Data were analyzed from a rare cohort of ten children with refractory
SD who met surgical criteria for DBS and underwent bilateral implan-
tation of the GPi with the Medtronic Percept PC neurostimulator
attached to DBS leads bilaterally (lead localization shown46 in Fig. 1A).
Six male and four female participants were included, with an average
age at surgery of 7.8 ± 3.6 (mean ± std) years. The phenomenology of
the dystonia was tonic (i.e., more fixed) in two participants and phasic
(i.e., more mobile) in eight participants47,48.

All participants except one experienced clinical improvement
with eventual resolution of SD after DBS and eventual discharge from
hospital (DBS programming settings listed in Supplementary Table 1).
Dystonia severity was measured using the movement subscale of the
Burke–Fahn–Marsden Dystonia Rating Scale (BFMDRS)49. The nor-
malized BFMDRS (BFMDRSnormalized) decreased significantly from the
SD period (0.98 ±0.03) to the non-SD period (0.64 ±0.28) across all
participants (U = 67, p = 0.008). All but one participant with long-term
follow-up experienced a Minimal Clinically Important Difference
(MCID)50 of the BFMDRS ( > 0.17 decrease in BFMDRSnormalized). Most
participants had a single SD episode; however, three participants
experienced multiple relapse episodes of SD.

Neural activity was recorded as LFP time series data longitudinally
during SD in all participants and additionally non-SD in seven partici-
pants over the course of 11 to 1155 days (median: 183 days). Three
participants only had recordings in the SD state due to death (n = 1) or
hardware replacement/removal (n = 2). A total of 183 time series
recordings (118 ± 103 seconds duration) were obtained across all par-
ticipants (18.3 ± 12.2 recordings per participant). Table 1 details the
clinical characteristics of the cohort including dystonia etiology and
neuroimaging, while Table 2 shows the LFP recording metrics and
concurrent medications used.

GPi beta-band oscillatory activity was increased during SD
Timeseries obtained with the Percept PC device from each recording
session were converted to the frequency domain and normalized to
facilitate comparisons between dystonia states (SD vs. non-SD) within
and across participants (Fig. 1). We identified a prominent beta-band
peak (between 12.5-30Hz) during SD, seen both cumulatively across all
participants (Fig. 1B) and in individual participants (Supplementary
Fig. 1). Participants experiencing multiple SD events showed recurrence
of the beta peak during subsequent SD recordings (sample participant
shown in Fig. 1C). The beta band-limited power was significantly higher
during SD (0.261 ±0.147) compared to non-SD (0.134 ±0.084; U =6175,
pcorrected<0.001) across all recordings from all ten participants (Fig. 2B),
and increased individually in all but two participants (Table 3). This
finding was robust when accounting for variability across recurrent SD
episodes and multiple participants (β=0.166; p<0.001).

To test whether the increased beta-band power was driven by
periodic or aperiodic components of the PSD, we applied the Fitting
Oscillations & One Over f (FOOOF) algorithm51, as shown for an illus-
trative participant in Fig. 2A. This analysis showed that the peak power of
the periodic component of the PSD in the beta-band significantly
increased during SD (0.653 ±0.325 vs. 0.511 ±0.230; U =4208,
pcorrected=0.007) across all recordings and participants (Fig. 2B) and in
individual participants (Table 3). This result was valid when controlling
for recurrent SD episodes and multiple participants (β=0.166;
p<0.001). The peak frequency within the beta band was slightly higher
in SD (23.39 ± 13.04 vs. 19.45 ± 15.24; U =4370, pcorrected=0.002).

Periodic peak power was not associated with participant-
specific factors
The beta-band peak power was only affected by the dystonia state (SD
vs. non-SD; β =0.157; p <0.001) and not associated with participant-
specific factors, including age (β = −0.009; p =0.602), sex (β = −0.105;
p =0.450), phenomenology (phasic vs. tonic, β = −0.196; p = 0.235) or
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etiology (inherited vs. acquired, β = −0.018; p =0.895). Moreover,
there was no effect of concurrent exposure to sedatingmedications at
the time of recording on peak power, including benzodiazepines
(β =0.063; p =0.452), non-benzodiazepine (clonidine, chloral hydrate
or baclofen) medications (β =0.163; p = 0.198), or any sedating medi-
cations (benzodiazepine or non-benzodiazepine) in general (β =0.153;
p =0.108). Benzodiazepine dosage also did not affect peak power
(β =0.255; p =0.120). Hence, elevated beta-band oscillatory activity
distinguished SD independent of participant factors.

Beta-band bursting amplitude and burst amplitude-duration
relation increased in SD
The increased pallidal beta-band oscillatory activity characterizing SD
was driven by beta-band bursting activity. Across 23,667 detected
bursts (7927 bursts in SD, 15,740 in non-SD), the mean bursting
amplitude significantly increased during SD (0.90 ± 0.32) compared to
non-SD (0.62 ±0.25; U = 649412, p <0.001) (Fig. 3A&B). There were no
differences in the mean bursting rate (bursts/min) (65.15 ± 10.31
vs.63.88 ± 10.73; U = 439655, p =0.766), or in the mean burst duration
(0.22 ± 0.05 sec vs. 0.22 ± 0.05 sec; U = 438744, p = 0.826) (Fig. 3B).

We examined the relationship between burst amplitude and
duration to investigate the dynamics of neuronal synchronization in
the GPi (Fig. 3C). Burst amplitude was correlated to burst duration in
both states (SD: β = 1.754; p <0.001, non-SD: β = 1.270; p <0.001).
Notably, SD was characterized by significantly higher amplitudes for a
given duration as this state had a significant modifying effect on the
amplitude-duration relationship (β =0.484; p < 0.001). Additionally,
bursts in SD had a higher baseline amplitude (adjusted intercept:

β = 0.489 vs. β = 0.35; p <0.001). This stronger amplitude-duration
relationship further supported the observation that SD is a state with
pallidal bursting activity of similar durations, but elevated amplitudes
compared to non-SD.

GPi aperiodic activity was decreased in SD
Unlike period beta activity, non-oscillatory (aperiodic) activity was
significantly decreased during SD compared to non-SD (Fig. 2C). The
aperiodic offset significantly decreased during SD (−0.451 ± 0.330 vs.
−0.166 ±0.262; U = 1549, p <0.001) across all recordings and partici-
pants using the FOOOF algorithm51, corresponding to a decreased
intercept of non-oscillatory background activity. Similarly, the aper-
iodic exponent of the 1/f-shape background activity also significantly
decreased in SD (1.445 ± 0.385 vs. 1.839 ± 0.399; U = 1558, p < 0.001),
indicating a flatter slope of the background activity. The effects of
dystonia state remained significant on both aperiodic offset
(β = −0.218; p <0.001) and exponent (β = −0.221; p =0.001) respec-
tively across recurrent SD episodes.

GPi beta-band activity correlated with worsened quality of life
By leveraging prospectively collected data through the CHILD-DBS
longitudinal registry45, we found that band-limited beta-band power
was significantly associated with the Pediatric Quality of Life Inventory
(PedsQL), a validated parental reported outcome (PRO)52–54 (Fig. 4A,
p =0.03; β = −92.7, R2 = 0.695). Dystonia state was neither associated
with (p =0.746; β = 14.9) nor modified (p = 0.864; β = −11.6) the asso-
ciation between beta power and PedsQL. The association was beta-
band specific as there was no association between PedsQL and activity

Fig. 1 | GPi activity during status dystonicus. A DBS leads across all ten partici-
pantswere localized to theGPi (shown in green) in normalized atlas space (MNI152)
using the DISTAL atlas. Figures B-C illustrate power spectral density (PSD) plots,
with the beta-band (13-30Hz) shown in grey shaded regions. B An aggregate PSD
plot across all LFP recordings fromall participants showed excessive activity during
SD (red) compared to non-SD (blue). C Participant S001 was among those who
experienced multiple SD episodes (colored lines), experiencing three discrete SD

episodes each with increased beta-band activity as seen in the respective PSD plots
(left). Raw LFP time series traces and corresponding filtered beta-band activity with
Hilbert envelopes are also shown for each dystonia state (right). In all line plots, the
dark lines represent the mean power and the shaded regions indicate the 95%
confidence intervals. Arb.u. arbitrary units, GPi globus pallidus interna, SD status
dystonicus.
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at any other frequency band (Supplementary Fig. 2, alpha-band:
p =0.560; β = 20.1, theta-band: p =0.358; β = 51.6). Averaging band-
limited powers across both hemispheres again showed a beta-band
specific association (p =0.005; β = −130.9, R2 = 0.501), with no such
association observed for other frequency bands (alpha-band:
p =0.532; β = 26.7, theta-band: p = 0.132; β = 137.4).

Interestingly, we did not identify any significant association
between BFMDRS ratings and PedsQL (p =0.355; β = −0.435). In turn,
we also observed no relations between BFMDRS and activity in any
frequency band, including the beta- (Fig. 4B, p =0.474; β = −49.4),
alpha- (p = 0.529; β = −23.8), and theta-bands (p = 0.681; β = 20.2).
These null associations persisted when band-limited powers were
averaged across hemispheres (beta-band: p =0.571; β = −35.0, alpha-
band:p = 0.941;β = −3.9, theta-band:p =0.716;β = 34.6). This indicated
that although the BFMDRS decreased in non-SD periods, it was neither
associated with PedsQL nor changes in band-limited power.

GPi narrowband beta-band activity demonstrated similar circa-
dian periodicity but altered power dynamics during SD
Given the attenuating effects of sleep patterns on dystonia and
potentially SD, we next sought to study dynamicmultiscale changes in
the beta-band in one participant with chronic narrowband recordings
(Fig. 5A) over the course of 91 days and 22 h (SD: 31 days, 6 h; Non-SD:
60 days, 16 h).We found that the beta-band LFP activity characterizing
dystonia stateswasmodulated by circadian rhythms, exhibiting strong
circadian periodicity in both SD and non-SD but significantly higher
beta-band powers during SD across both daytime (12:00 – 19:00) and
nighttime (21:00 – 06:00), and treated with similar medications (dia-
zepam, chloral hydrate, tetrabenazine, gabapentin and clonidine) at
regular intervals throughout both dystonia states. First, the Rayleigh
test confirmed significant circadianmodulation of beta-band power in
both SD (p <0.001) and non-SD (p < 0.001), while a permutation-based
Kuiper test revealed no significant difference in the 24-hour distribu-
tion shapes between the two conditions (V =0.0239, p = 0.605). Next,
applying a Linear Autoregressive (LAR) model39 (Supplementary
Fig. 3), we computed an overall R2 of 0.809 across the SD period and
R2 of 0.865 across the non-SD period. The models showed circadian
periodicity with a mix of recent lags (e.g. 10min and 30min prior
respectively) and longer lags (e.g. 14hr10min and 18hr30min prior) for
optimal prediction. Therewas nodifference in themeandailymodelfit
between SD (R2 = 0.681) and non-SD (R2 = 0.693, t = −0.481, p =0.632).

Assessment of beta-band power dynamics revealed that themean
power increased during daytime in both SD (3754 ± 1397 vs.
2501 ± 1355; U = 2078527, pcorrected < 0.001) and non-SD (1213 ± 579
vs. 951 ± 450; U = 5892577, pcorrected <0.001). However, SD was char-
acterized by greater power across daytime and nighttime (Fig. 5B,
Daytime: U = 3748008, pcorrected < 0.001; Nighttime: U = 5969144,
pcorrected < 0.001). Moreover, SD experienced a larger average propor-
tional increase in daytime power (Fig. 5C, 0.31 ± 0.27 vs. 0.21 ± 0.20;
U = 1355, pcorrected =0.007).

Machine learning models classified SD and non-SD states from
LFP PSDs
As a proof-of-concept towards future aDBS paradigms for SD, we
assessed if LFPs could beused as features to trainMLmodels to classify
the corresponding dystonia state (SD vs. non-SD). Random forest
classifiers predicted dystonia state using LFPs with an Area Under the
Receiver Operating Characteristics Curve (AUROC) of 0.76, using
Leave-One-Patient-Out Cross-Validation (LOPOCV) where training in
each fold occurred on nine patients’ LFP data and tested on a holdout
tenth patient (Supplementary Materials).

Discussion
Status dystonicus is a life-threatening condition with no known bio-
markers to define transitions between baseline dystonic states and SD.Ta
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In this study, we investigated neural activity from the GPi in a unique
and rare cohort of children with SD and heterogeneous clinical fea-
tures. We observed that excessive beta-band activity was a hallmark of
SD, with 1) significantly increased periodic activity and bursting
amplitude during SD, 2) significant correlations between beta-band
power and HRQoL and 3) strong circadian periodicity and character-
istic narrowband beta-band power increases during SD.

This study explores neurophysiological biomarkers of SD and
involves a large cohort of pediatric participants with dystonia, using
months-to-years of longitudinal LFP recordings. Although relatively
rare and under-studied, GPi DBS is an increasingly recognized and
utilized treatment for refractory SD8. Intracranial biomarkers are
essential to track dystonia states and to differentiate SD episodes from
chronic baseline levels of dystonia4,5,7. Moreover, such markers are
required for the development of aDBS targeted towards SD.

Our results demonstrate that increased pallidal beta-band activity
is a hallmark of SD, characterized by an increase in the periodic com-
ponent of the LFP. These findings suggest that SD is a measurable
clinical state that is distinct from baseline dystonia. Prior studies have
shown increases of low-frequency activity with dystonic
symptoms16,17,55. However, these were in adults with focal dystonia, and
did not study the uniquely severe state of SD16,17,55. Inprior case reports,
our grouphas previously reported that GPi beta-bandoscillatorypeaks
can be seen empirically in refractory pediatric SD56,57. The current
study represents a quantitative analysis of SD intracranial activity
across multiple participants and LFP recordings. Importantly, our
results provide evidence for the reproducibility of beta-band sig-
natures as several participants experienced SD relapse and recurrence
of high beta-activity states. These beta-band oscillations were only
affected by dystonia state, and not associated with sedating medica-
tions (neither benzodiazepines nor non-benzodiazepines), etiology
(inherited vs. acquired), sex or age, with patients ranging in age from
early childhood at three to young adulthood at sixteen. Phenomenol-
ogy (tonic vs. phasic) also did not modify beta-band activity at either
the group or individual participant level. This supports the conclusion
that highly excessive GPi beta-band activity ismechanistically involved
in SD and may serve as a state-specific marker of SD independent of
age or demographic factors, raising the possibility that our resultsmay
generalize beyond children.

The current study presents an association between increased
beta-band oscillatory activity in SD and GPi bursting activity, namely
increased beta-band bursting amplitude without changes in duration.
Bursting neurophysiology is of importance in movement disorders
since excessive oscillatory activity may be partly explained by
increased amplitude and/or duration of transient bursts of

synchronous activity25,58, and may impair information transfer in the
basal ganglia59. Our results suggest that SD is a state associated with
either larger numbers of synchronous pallidal neurons and/or
increased neuronal firing intensity (i.e., increased bursting amplitude)
25, as opposed to progressive synchronization over time (i.e.,
increased bursting duration)25,60 or changes in phase. Bursting phy-
siology in adults has been analogously described in PD, where
increased beta-band bursting duration as opposed to amplitude may
occur with worsemotor symptoms20,25, in contrast to our results in SD.
However, bursting in dystonia has only been studied in small adult
cohorts with primarily focal dystonia and not compared across dif-
ferent severities20,24,61, making these distinct findings valuable to
understanding the pathophysiology of SD.

Our study also identified that increased beta-band activity corre-
lated significantly with lower HRQoL as measured by the PedsQL, an
association specific to the beta-band and present regardless of using
band-limited powers from a single optimal hemisphere or averaged
across both hemispheres. This relation was not modified by whether
participants were in SD or non-SD states, demonstrating that excessive
beta-band activitywas a specificmarker ofworseHRQoL in dystonia. In
children with chronic severe disorders like generalized dystonia, such
HRQoL measures are critical clinical outcomes52–54. The PedsQL, a
validated and widely-used pediatric HRQoL metric52, was chosen to be
measured longitudinally in all DBS patients at our center through the
CHILD-DBS registry45 given its reliability52, construct validity across
diverse populations53,54, and sensitivity to meaningful changes52. This
measure also captures important aspects of impairment observed
during SD6. Intracranial correlates to such HRQoL measures are hence
crucial as they are relevant to guidingmanagement22,27. It is interesting
to speculate that the observed intracranial biomarkers in SD are
superior to traditional clinical tools like the BFMDRS57, a scale that
while validated in adults49,50 has yet to be studied for validity and
reliability in children62,63. Of note, the LFP measures in our study did
not correlate with BFMDRS, which itself was not correlated with
HRQoL outcomes. This aligns with previous research indicating that
the BFMDRS does not capture important HRQoL improvements post-
DBS that can occur even without marked reductions in BFMDRS64–66.
This limitation is particularly pertinent in childrenwithDBS-responsive
SD but persistent levels of baseline dystonia62,63. For example, despite
clinical improvement, some children experienced marginally
decreased or increased BFMDRS scores during non-SD. The BFMDRS
also poorly discriminates normal dystonic-like movements that are
common in children62,67, and is further difficult to apply in younger
children such as some in our cohort67. Our results underscore the
major disadvantages of the BFMDRS in assessing clinical outcomes in

Table 2 | Participant electrophysiological recordings and medications

ID # LFP time series
recordings

DBS inserted
during SD

Non-SD LFP recorded (reason
if N)

# SD
post DBS

Benzo - SD Benzo -
Non- SD

Non-
benzo SD

Non-benzo
Non-SD

S001 38 Y Y 3 Y Y Y Y

S002 22 N Y 2 Y N N Y

S003 23 Y Y 1 Y Y Y N

S004 11 Y Y 1 Y Y Y N

S005 15 Y Y 1 Y (PRN) N N N

S006 27 Y Y 1 Y Y Y Y

S007 37 Y Y 2 Y Y Y N

S008 8 Y N (IPG switched to Medtronic
Activa™)

0 Y Y Y N/A

S009 2 Y N (Death due gastrointestinal
inflammation)

0 Y N/A Y N/A

S010 10 Y N (DBS system explanted due to
infection)

0 Y Y Y N

Benzo Benzodiazepinemedication,DBS deep brain stimulation, LFP local field potential,NNo,Non-benzo non-benzodiazepinemedication (baclofen, chloral hydrate, clonidine), PRN pro re nata (i.e.
medication taken as needed), SD status dystonicus. Y Yes.
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pediatric dystonia and support our focus on biomarkers of alternative
validated measures of clinical severity, namely HRQoL, in this
population.

We also analyzed the aperiodic component of LFPs and found that
this non-oscillatory background activity was decreased during SD,
supporting the findings that the increased beta-band activity in SDwas
primarily due to periodic oscillatory activity. Aperiodic activity itself,

however, is also significant as it reflects the balance between inhibition
and excitation across neuronal populations andmay be lower in states
of decreased inhibition28–31,68. The aperiodic component in SD, char-
acterized by a flatter 1/f spectral profile and lower intercept, may
suggest an increase in pallidal excitatory background activity. This
contrasts with the higher aperiodic activity observed in the less severe
non-SD state, possibly representing increased inhibitory background
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activity during clinical improvement. Studies post-DBS have also
shown that STN aperiodic activity increases acutelywith stimulation in
adult dystonia32 and over months in PD independent of medication
state and despite clinical stability28, potentially suggesting increased
inhibitory activity related to DBS and not related to clinical
progression28. Further investigations of dystonia-specific networks
projecting to the GPi may elucidate the mechanisms of these pallidal
aperiodic changes and clarify their role in SD pathophysiology.

We found that multi-scale patterns, namely circadian rhythms,
further modulate the beta-band LFP activity characterizing dystonia
states. Using continuous narrowband beta-band recordings over
months, we showed strong circadian periodicity in both SD and non-
SD but significantly higher power during SD across both daytime and
nighttime. LFP circadian dynamics are a key consideration before they
can be utilized effectively to track dystonia states longitudinally or
employed as feedback markers in future adaptive DBS paradigms for
SD43,44. They are especially important in SD sinceclinical improvements
are often associated with sleep and/or sedation5,33, while sleep itself is
disordered during SD5. Our findings that beta-band power increased
during daytime in both SD and non-SD are analogous to prior studies
showing that GPi beta-band power also usually increases during the
day in adult dystonia34 and PD37. SD was further distinguished by ele-
vated daytime beta-band power compared to non-SD, in keeping with
our results from longitudinal time series recordings. The additional
observation that beta-band power proportionately increased more
during the day in SD raises the question if any corresponding relative
worsening in clinical severity during the daytime is more pronounced
than in non-SD. Furthermore, the increased nighttime beta-band
activity in SD also promptswhether this is associatedwith the impaired
sleep often seen during SD4,5,33. Of note, this participant remained on
similar sedatingmedications at regular intervals both during and post-
SD, making an additional effect of increased sedation during SD or
nighttime in general less likely to impact these findings. Although
these results were derived from a single participant, they have not
been previously studied in pediatric dystonia. This approach may
inform future larger studies assessing chronic narrowband recordings
in SD and non-SD pediatric dystonia to potentially allow continuous
monitoring of neural correlates to clinical severity.

Lastly, we found that random forest classifiers could classify LFP
PSDs based on dystonia state with moderate accuracy. Classifier per-
formance was robust despite training using LOOPV to ensure that
testingonly occurredonunseendata fromholdoutpatients, indicating
that the PSD features defining dystonia states generalized across
patients. MLmodels utilizing sensed LFPmarkers have been employed
to classify neural states and guide aDBS in other movement
disorders40,43,44,69. Our proof-of-concept method may similarly inform
the implementation of aDBS to treat SD in future studies with larger
cohorts. Although there is a lack of evidence regarding recommended
stimulation adjustments during SD beyond initial programming8, our
institutional experience suggests a strategy of increasing stimulation
frequency or amplitude during periods of dystonia exacerbation. The
use of ML methods to classify neural states may not only allow for

adaptive stimulation changes but can also support timely optimization
of urgent medical therapies and early hospital admission to monitor
and manage potential complications proactively.

Several limitations warrant attention. Although SD is a rare con-
dition and these recordings represent the largest dataset available in
this exquisitely vulnerable and poorly understood population, this is a
relatively small sample size limited by the sampling ability of the Per-
cept device.We attempted tomitigate this by analyzing a large number
of longitudinal time series recordings with heterogeneity in age, phe-
nomenology, etiology, and medications. However, larger multicenter
studies involving more participants, broader dystonia characteristics,
and further cohort diversity to increase statistical power are needed.
Quantifying SD-severity beyond SD versus non-SD may also help with
further assessing the clinical heterogeneity of SD, which could provide
amore nuanced understanding of beta-band activity in different types
of refractory SD. Furthermore, LFP metrics were compared across
dystonia states, including SD recurrences, and no clinical lesional
effects were observed within one week post-operatively. However, a
lesional effect potentially contributing to the findings cannot be ruled
out, given the relatively small number of participants experiencing
multiple SD episodes. Another limitation is that only one participant
studied had chronic beta-band narrowband recordings. Future studies
with more narrowband recordings across more participants, along
with frequent standardized dystonia and sleep state assessments,
could provide further insights into the relationship between LFP
dynamics and clinical states. Additionally, although we localized all
recording contacts to the GPi, directional sensing from the segmented
DBS leads implanted in all patients was not utilized in this study but
may have allowed further refinements in anatomical localization of
pathological LFP activity. Lastly, the inherent limitations of the
BFMDRS in pediatric populations and its lack of correlation with
HRQoL outcomes underscore the need for alternativemeasures better
representative of meaningful clinical changes, as neural activity may
better correlate with such metrics.

In conclusion, our results show that excessive beta-band activity
in the GPi is a biomarker of SD. These findings may inform larger
studies, allowing the tracking of dystonia states from intracranial
activity and future potential applications of adaptive DBS for severe
dystonia.

Methods
Study design and participants
The study and all procedures were approved by the Research Ethics
Board (REB) at HSC, and LFP and clinical data were collected through
the CHILD-DBS registry45. Written informed consent was obtained
from all participants’ families. In this prospective study, ten pediatric
participants with a diagnosis of medically refractory SD underwent
bilateral GPi DBS implantation at the Hospital for Sick Children (HSC)
in Toronto, Canada, from January 2021 to Dec 2023. The inclusion
criteria were individuals diagnosed with refractory SD by a neurologist
and who received GPi DBS, either implanted for treatment of SD or
who developed SD at some point after implantation. SDwas defined as

Fig. 2 | Beta-band periodic and aperiodic activity during status dystonicus.
APeriodic and aperiodic components of the LFPwerecomputed for each recording
across SD and non-SD, as shown for some recordings in exemplary participant
S001. Dotted grey arrows indicate when numerous additional recordings (not
shown) were obtained and analyzed similarly. B Band-limited beta-band power
increased significantly (pcorrected <0.001) in SD across all recordings from all parti-
cipants (left; n = 183). This was explained by an increase in the periodic-component
peak power (pcorrected =0.007) across all participants/recordings (right; n = 183).
C The non-oscillatory aperiodic activity increased in the non-SD period across all
participants/recordings as represented by an increase in aperiodic exponent (left;
pcorrected <0.001, n = 183) and offset (right; pcorrected <0.001, n = 183), further
demonstrating that the increased beta-band activity in SD was due to oscillatory

activity. D Comparisons of SD to non-SD for each LFP metric are shown for each
participant that hadboth SDand non-SD recordings. Redpanels (dark red:p <0.01;
light red p <0.05) represent statistically significant increases, green (dark green:
p <0.01; light green p <0.05) significant decreases, and white no significant change
in the correspondingmetric during SD. All statistical comparisons were conducted
with Mann-Whitney U-tests, Bonferroni-corrected for multiple comparisons. In all
box-and-whisker plots shown, the center line of each box is the median, the box
bounds represent the interquartile range (IQR) spanning from the first to third
quartile, the whiskers extend to the furthest data points within 1.5 times the IQR
from the edges of the box, while data points shown beyond the whiskers represent
the outliers. Arb.u. arbitrary units, LFP local field potential, SD status dystonicus.
**p < 0.01. *p < 0.05.
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a movement disorder emergency characterized by severe episodes of
generalized or focal hyperkinetic movement disorders that had
necessitated urgent hospital admission because of life-threatening
complications regardless of the patient’s neurological condition at
baseline6,70. Life-threatening complications included severe general-
ized dystonia itself, or associated complications of bulbar weakness,
compromised upper airway patency, exhaustion/pain, metabolic
imbalances, organ failure (e.g. respiratory, cardiac, renal), aspiration,
rhabdomyolysis or failure to thrive70. Refractory SD was defined as
having failed all attempted in-hospital pharmacological/medical ther-
apy, with ongoing severe dystonia and consequent complications5,8.
The criteria for surgical implantation were patients with refractory SD,
which was defined as having failed all attempted in-hospital pharma-
cological/medical therapy, with ongoing severe dystonia and con-
sequent complications8. The SD period was defined as beginning with
the onset of SD hospital admission and ending with discharge. Parti-
cipants and their families were not compensated for any research
activities.

Participants had LFP recordings and clinical assessments long-
itudinally during SD in seven participants (S001–S007). Recordings
and clinical assessments were conducted in SD-alone (S008–S010) in
three participants who did not have recordings in the non-SD state. All
subjects were programmed according to established guidelines8.

DBS surgery
DBS leads carrying 8 contacts for directional stimulation (SenSight
model, Medtronic – Dublin, IR) with 1.5-mm spacing were placed
bilaterally in the GPi. Direct targeting with pre-operative magnetic
resonance imaging (MRI) was used. Surgical targeting was done as per
HSC institutional approach. The two leads were connected using
extensions tunneled to a Percept PC implantable pulse generator (IPG)
implanted in the chest wall. No participants received IPG implantation
in the abdominal wall.

DBS electrode localization
For each participant, pre- and post-operative high-resolution T1-
weightedMRI sequences were obtained. Electrode reconstruction was
conducted using the advanced processing pipeline in Lead-DBS46

(version 2.5; https://www.lead-dbs.org/). Anatomical localization of
implanted leads was conducted for all ten participants in normalized
atlas space (MNI152). Three-dimensional reconstruction of the leads
was illustrated on a 100-micron resolution, 7.0 Tesla FLASH brain. Due
to anatomical differences between the adult and pediatric brains,
although some leads appeared slightly off-target during localization
(Fig. 1A), all the leads were confirmed to be anatomically well-
positioned on pre-surgical planning and post-operative MRI (Supple-
mentary Fig. 4).

Clinical assessments
Neurological examinations were conducted during SD as well as
longitudinally for a subset of participants variably at 6months, 1 year, 2
years, and 3 years after initial DBS surgery. The Burke–Fahn–Marsden
Dystonia Rating Scale movement subscale (BFMDRS) measured dys-
tonia severity at each timepoint that a given participantwas assessed49

and was scored by a movement disorders neurologist. The
BFMDRSnormalized was calculated individually for each participant by
dividing the subsequent non-SD BFMDRS values by the preceding
BFMDRS in SD. If the BFMDRS in the non-SD period decreased more
than 17%, this was defined as a clinically-relevant Minimal Clinically
Important Difference (MCID)50. The mean of BFMDRSnormalized during
SD and non-SD was compared across all participants.

HRQoL metrics were also measured longitudinally. The PedsQL is
a validated PRO52 with good reliability and construct validity in a wide
variety of general53 and disease-specific54 populations and with
responsiveness to meaningful change52. The PedsQL was calculatedTa
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Fig. 3 | Beta-band bursting activity during status dystonicus. A Example beta-
band bursting activity (grey) shown for participant S004 during SD. Bursts (shaded
regions) were defined as activity greater than the 75th percentile (red dotted line) of
beta envelope amplitude (black curve) and lasting >100ms. B Across all partici-
pants and recordings, the mean burst amplitude (left panel) increased during SD
(p <0.001, n = 183), while there was no difference between SD and non-SD in the
mean burst rate (central panel; p =0.766, n = 183) and mean burst duration (right
panel; p =0.826, n = 183) using Mann-Whitney U-tests. C For each detected burst
across all patients, burst amplitude was plotted against burst duration separately
for SD (left panel) and non-SD (right panel). Using GLMMs, Burst amplitude was
correlated to burst duration in both states (SD: β = 1.754; p <0.001, non-SD:

β = 1.270; p <0.001). However, SD was further characterized by a stronger
amplitude-duration relationship, with significantly higher amplitudes for a given
duration (β =0.484; p <0.001) and higher baseline burst amplitude (adjusted
intercept: β =0.489 vs. β =0.35; p <0.001). For both burst plots, the relation
between the burst amplitude and duration is shown as a black dotted line (using
corresponding GLMM β-values for slope and intercept). In box plots, central marks
indicated the median and edges the 25th and 75th percentiles of the distribution,
and whiskers indicated minimal and maximal values per hemisphere. Arb.u. arbi-
trary units. GLMM, generalized linear mixed-effects model. SD, status dystonicus.
**p < 0.01. *p < 0.05.
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using family-reported feedback. The PedsQL total score was deter-
mined at each assessment time.

LFP time series recordings and signal processing
Time series neural recordings. LFP time series recordings were
acquired using the Percept PC device (250Hz sampling rate). LFPs
were labeled as occurring in ‘SD’- or ‘non-SD’- dystonicus based on
clinical assessment. Recordings were conducted with DBS off via
bipolar montage (i.e., signal subtraction) using BrainSense Streaming
(Indefinite Streaming mode) from all three possible contact pairs
simultaneously (0–2 or 1–3 and 0–3). No significant movement or
electrocardiographic artifacts were observed in raw time series data
traces, and beta-band filtered data using fourth-order zero-phase
Butterworth bandpass filters and Hilbert envelopes were obtained for
visualization (Fig. 1C). All recordings were filtered (Python SciPy butter
function: high pass = 1 Hz, low pass = 100Hz) and then converted to
the frequency domain.

Power spectraldensity estimations. Power spectraldensity (PSD)was
computed from each raw time series recording using Welch’s method
(Python SciPy welch function) with a Hann window of 1 s, window-
overlap of 500ms, and a 256-point fast Fourier transform (FFT). For
each participant, the channel with highest relative power during SD
was selected in each hemisphere, and the single hemisphere with the
most power was selected per participant as done in prior studies20. To
compare LFP recordings across time, dystonia state, and participants,
PSDs were normalized by dividing by the total power, since absolute
power varies with local tissue properties and electrode impedance.
PSDs were used to assess power in various frequency bands, the per-
iodic component of the LFP for peak analysis, and bursting activity.

Band-limited power analysis. Band-limited power was calculated as
the total within each of the canonical frequency bands defined as theta
(3-7Hz), alpha (7-12.5Hz) and beta (12.5-30Hz), given the correlation
of low-frequency and beta-band activity between hypo- and hyperki-
netic dystonic symptoms in prior studies16,17,55. The total power in each
band was compared between SD and non-SD for each participant and
across all participants. A generalized linear mixed-effects model
(GLMM) was used to assess the isolated effect of dystonia state on
band-limited beta-band power, controlling for intra-patient and inter-
episode variability. This was computed using dystonia state as a fixed

effect, participant as a random intercept, and the specific SD episode
as a random slope nested within patients.

Periodic component analysis. To separate periodic and aperiodic
activity in the LFPs, PSDs of each recordings were modeled using the
Fitting Oscillations & One Over f (FOOOF) algorithm51. This approach
models aperiodic activity using an aperiodic component, reflecting 1/
frequency- (1/f)-like characteristics, with a variable number of periodic
components (putative oscillations) fitted with Gaussian models as
peaks rising above the aperiodic component51. Background aperiodic
activity wasmodeled using the power-law function, where the power is
proportional to 1/f and decreases with f. The periodic peak center
frequencies, bandwidths and powers over the aperiodic component
were computed,without requiringpredefining specific power bandsof
interest while controlling for the aperiodic component. The peak
powers were compared between status and non-status for each par-
ticipant and across all participants. A GLMM was used to assess the
isolated effect of dystonia state on periodic power, using dystonia
state as a fixed effect, participant as a random intercept, and the
specific SD episode as a random slope nested within patients.

Periodic component associations with demographics, phenomen-
ology and etiology. To evaluate the effects of dystonia state (SD vs
non-SD), age, sex, phenomenology (tonic vs. phasic), and etiology
(inherited vs. acquired) on beta-band periodic peak power, we com-
puted individual GLMMs using each as a fixed effect separately. Ran-
dom intercepts were used by each GLMM for each participant to
account for within-subject variability. We then assessed the effect of
concurrent sedating medications at the time of recording on peak
power. Separate GLMMs were computed using exposure to either
benzodiazepines, non-benzodiazepine sedating medications (cloni-
dine, chloral hydrate or baclofen), or any sedating medications (ben-
zodiazepine or non-benzodiazepine) in general as fixed effects. Lastly,
a GLMMwas computed using weight-based total daily benzodiazepine
dosage as a fixed-effect, converted to Diazepam-equivalent dosing for
non-Diazepam benzodiazepines (Supplementary Data 1). Each GLMM
applied random coefficients for each patient’s medication-power
relation, and random intercepts for each patient. The p- and β-values
of each fixed effect were computed. The statistical power of each
GLMM was computed using a simulation-based power analysis (Sup-
plementary Material).

Fig. 4 | GPi activity and correlation to clinical metrics. A Lower health related
quality of life (i.e. lower PedsQL) was significantly associatedwith higher beta-band
power (p =0.030; β = -92.7), using GLMMs computed with LFP and clinical metrics
measured at multiple time points across all participants (participant color labels
shown in legend). This association was not modified by dystonia state type (SD vs.
non-SD; p =0.746; β = 14.9) nor its interaction with beta-band power (p =0.864;
β = -11.6). B There were no significant correlations between band-limited powers

and BFMDRS using GLMMs, as shown for beta-band power (p =0.474; β = −49.4).
For each plot shown, the relation between the given band-limited power and clin-
ical metric is shown as a grey dotted line (using corresponding GLMM β-values for
slope and intercept), and the p-value of the correlation shown in the top right.
Arb.u. arbitrary units, BFMDRS Burke-Fahn-Marsden Dystonia Rating Scale, GLMM
generalized linear mixed-effects model, LFP local field potential, PedsQL Pediatric
Quality of Life Inventory, SD status dystonicus.
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Beta-band bursting. To assess bursting activity in the beta-band, peak
frequencyof the LFPperiodic componentwasfirst computedusing the
FOOOF51 algorithmon each recording’s PSD. Each LFP recordingwas z-
score normalized20, then bandpass filtered ±3Hz around the pre-
determined beta peak frequency and envelopes determined using the
Hilbert transform20,24–26,61. Beta bursts were detected separately in each
LFP recording using a threshold of 75th percentile of the beta envelope
amplitude20,24–26,61. The average burst duration and bursting rate,
defined as the number of bursting episodes per minute, were deter-
mined for each recording (beta bursts <100ms duration were
excluded)25,26. Beta burst amplitude was calculated as the maximum
beta envelope amplitude during the beta burst. Bursting metrics were
compared between SD and non-SD states.

Next, individual bursts were further analyzed by plotting burst
amplitude vs. duration for all bursts, separately in SD and non-SD

states25. GLMMs (Python Statsmodels) were used to examine the
relationship between burst duration and amplitude, controlling for
group differences (SD vs non-SD) and accounting for random varia-
bility across individual bursts. The model included burst duration and
dystonia state type (SD vs non-SD) as fixed effects, as well as their
interaction to test whether the relationship between duration and
amplitude differed between SD and non-SD. Random effects allowed
for variability in burst-specific slopes and intercepts. Statistically sig-
nificant factors were determined, and if significant the slopes and
intercepts were then compared between SD and non-SD.

Aperiodic LFP component analysis. Based on the FOOOF method
used to calculate separate periodic components of the LFPs, the
aperiodic components were also extracted for each recording to
analyze non-oscillatory background activity that has no characteristic

Fig. 5 | Circadian periodicity and power dynamics in dystonia states. All figure
panels were constructed using data fromparticipant S004.AGPi narrowband beta-
band activitywas passively recorded longitudinally,withdaytimedefined as 12:00–

19:00 (yellow regions, sun symbol) and nighttime as 21:00 – 06:00 (dark blue
regions, moon symbol). Circular polar plots (left panel) showed beta-band power
(radial axis) vs. time of day (angular axis), with themean (lines) and 95% confidence
interval (shaded regions) over a 24-h cycle shown for both SD and non-SD using 10-
minutes averaged increments. Circadian beta-band power fluctuations in both SD
and non-SD were compared using linear plots (right upper panel) with the 95%
confidence intervals shown in shaded colors. Circadianfluctuations during the non-

SD period (grey region in right upper panel) were more evident when plotting
separately (right lower panel). B The mean daytime (pcorrected <0.001, n = 4115) and
nighttime (pcorrected <0.001, n = 5386) beta-band powers were significantly greater
in SD (Mann-Whitney U-test, Bonferroni-corrected for multiple comparisons).
C The proportional change in power from daytime to nighttime was greater in SD
(pcorrected =0.007, n = 9501; Mann-Whitney U-test). In box plots, central marks
indicate themedian and edges the 25th and 75th percentiles of thedistribution, and
whiskers indicate minimal and maximal values per hemisphere. Arb.u. arbitrary
units. SD, status dystonicus. **p < 0.01. *p < 0.05.
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frequency51. First, the aperiodic offset, representing the positive or
negative translation of the whole spectrum, was calculated. Next, the
aperiodic exponent describes the negative slope of the 1/f-like activity.
These two aperiodic features were then compared between SD and
non-SD for all recordings individually for each participant (if both SD
and non-SD recordings were present), as well as between SD and non-
SD across all recordings from all participants. GLMMs were used to
assess the isolated effect of dystonia state on aperiodic offset and
exponent, respectively, each using dystonia state as a fixed effect,
participant as a random intercept, and the specific SD episode as a
random slope nested within patients.

Correlation between clinical and LFP metrics. GLMMs were used to
assess the relation between clinical (PedsQL or BFMDRS) and LFP
metrics (Python Lmer). Specifically, separate models were used for
each clinical metric, with the clinical metric as the dependent variable.
A GLMM was created using the band-limited beta-band power as the
independent variable (fixed effects), and the effects of dystonia state
type (either SD or non-SD) and the interaction of beta-band power and
dystonia state as additional fixed effects and random intercepts for
each participant. This interaction was included to assess if the effect of
band-limited beta-band power on the clinical metric changes
depending on the dystonia state.

Separatemodels were used to assess the relations between each
clinical metric and band-limited alpha-band or theta-powers
respectively, each model also including fixed effects of the dysto-
nia state and the interaction of the model’s respective band-limited
power factor with dystonia state, again with random intercepts for
each participant. Next, a GLMMwas computed to assess the relation
between BFMDRS and PedsQL, using BFMDRS, dystonia state and
the BFMDRS-state interaction as fixed effects and participants
as random intercepts. Lastly, all models were computed again
separately using the average band-limited powers between the
optimal contact in both hemispheres for each participant as fixed
effects, instead of the band-limited power from the single optimal
hemispheres. The p- and β-values of each fixed effect were com-
puted, as well as the overall model R2 if at least one factor showed
significance.

Narrowband beta-band spectral amplitude recordings. Chronic LFP
recordings were conducted using the BrainSense Timeline function at
frequencies within the beta-band for the left hemisphere of one par-
ticipant, S004. The hemisphere and center frequency were based on a
BrainSense Survey conducted during the SDperiod, which provided to
clinicians a PSD which demonstrated visually the peak frequency to
select. The average LFP power within this clinician-selected frequency
band of interest (center frequency ±2.5 Hz) over 10-minutes was
recorded and stored every 10-minutes. The average power over the
course of the recording duration for each 10-minute interval in the 24-
hour cycle was calculated for SD and non-SD respectively. While sti-
mulation remained turned on at the usual programmed settings
(Supplementary Table 1), power at a center frequency of 15.63Hz was
recorded for themajority of the recording, except for thefirst fewdays
at 12.7 Hz (March 23-27, 2023).

Circular statistics of beta-power dynamics in SD and non-SD. To
assess the presence and characteristics of circadian modulation in
beta-band power during SD and non-SD, the Rayleigh test was used to
evaluate whether LFP power was non-uniformly distributed over 24 h
(Python Scipy). To compare the overall distribution shapes between
SD and non-SD, a permutation-based Kuiper test was used as a non-
parametric circular analogue of the Kolmogorov–Smirnov test. The
Kuiper V statistic was recalculated across 10,000 permutations of
group labels to obtain an empirical p-value under the null hypothesis
of distributional equivalence.

Circadian periodicity in beta-power dynamics in SD and non-SD. A
Linear Autoregressive (LAR) model was used to study temporal
dependencies andperiodicity of the circadianpower data for in SD and
non-SD states. LAR models allow the prediction of time series data,
using a linear combination of prior values (lags) to model the current
value, as done in prior work by Provenza et al. studying circadian
periodicity of narrowbandLFPdata39. The LARmodelwasdescribed as:

Xt = c+ϕ1Xt�1 +ϕ2Xt�2 + � � � +ϕpXt�p + εt ð1Þ

where Xt is the value of the narrowband power at time t, c is a constant
term, ϕp is the linear multiplier for pth lag’s power-value Xt�p, and εt is
the error term.

Time series data were transformed into a format for supervised
learningby creatingup to 144 lagged features, sinceeach 24-hour cycle
has 144 timepoints separated by 10-minutes (from Xt�1 to Xt�144).
Significant lagged features were selected through iterative five-fold
cross-validation to prevent overfitting. At each iteration, an Ordinary
Least Squares (OLS) regression model was trained, and lags with p-
values < 0.05 in at least 3 of the 5 folds were retained. The final model
was then trained on the full dataset using the selected lags, producing
an optimized regression equation. Model performance was evaluated
using five-fold cross-validation, and R2 (proportion of variance
explained by the model) was computed for each fold and averaged.
This approach ensured the inclusion of only robust, statistically sig-
nificant laggedpredictors whileminimizing overfitting andproviding a
reliable measure of predictive accuracy. Finally, the R2 and significant
lags were compared between SD and non-SD.

Next, we repeated this but calculated the R2 values on a daily basis
and statistically compared the mean daily R2 between SD and non-SD
to assess for differences in the level of fit in LAR.

Beta-band power changes between daytime and nighttime in SD
and non-SD. The average narrowband beta-band power during day-
time (defined as 12:00 – 19:00) was compared to nighttime (21:00 –

06:00) during either SD or non-SD states. A slightly larger duration of
daytime and nighttime was chosen than in prior literature37. Late
mornings (06:00−12:00) were not analyzed similar to prior studies37,
as transition between sleep and wake may vary on a day-to-day basis.
The average daytime and nighttime powers were compared in SD and
non-SD, respectively. The average proportional change between day-
time and nighttime power in a 24-hour cycle across all days was then
compared between SD and non-SD.

Binary dystonia-state machine learning classifiers. Random forest
classifiers (Python Scikit-learn) were trained to classify LFP PSD-data as
belonging to SD or non-SD state71. SD-state was used as the label, and
the powers at each frequency in the filtered PSD were used as model
features. To prevent data leakage and test model robustness on
unseen data, LOPOCV was used where the model was trained and
tested ten separate folds. In each fold, a model was trained using nine
patients' recording data and tested on a holdout tenth patient’s data.
This was repeated for a total of ten folds, and a cumulative confusion
matrix fromadding the confusionmatrices of each foldwas calculated,
and corresponding performance metrics including cumulative
AUROC, precision and recall were computed71.

This was repeated, but instead using LOOCV, where in each fold
the model was trained on n-1 recordings across all patients and tested
on a single holdout recording. This was repeated n times, and cumu-
lative confusion matrices and performance metrics were calculated.

Statistics. Shapiro’s normality test was performed on all data, includ-
ing band-limited powers, periodic peakpower, and beta-band bursting
metrics (amplitude, burst rate), to determine the appropriate statis-
tical tests. If the test statistics concluded that data was not normally
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distributed (p > 0.05), non-parametric tests were performed. Specifi-
cally, the Mann-Whitney U-test was used for all comparisons of means
between SD and non-SD for each LFP metric. Otherwise, Welch’s t-test
was used. The Bonferroni correction was used for multiple compar-
isons. All results are indicated as mean ± standard deviation and
reported as significant at an α level of 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study, including the source data of all fig-
ures, are provided in the Source Data file. Source data are provided
with this paper.

Code availability
All code is publicly available onGitHub (https://github.com/arjunastra/
SD_manuscript_codes).
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