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Identifying overlapping communities in networks is a challenging task. In thiswork we present a novel
approach to community detection that utilizes a Bayesian nonnegative matrixfactorization (NMF) model to
extract overlapping modules from a network. The scheme has the advantage of soft-partitioning solutions,
assignment of node participation scores to modules and an intuitive foundation. We present the performance of
the method against a variety of benchmark problems and compare and contrast it to several other algorithms for
community detection.

I. INTRODUCTION

Community structure, or modular organization, is a signifi-
cant property of real-world networks as it is often considered
to account for the functional characteristics of the systemun-
der study [1–4]. Although the notion of ‘community’ appears
intuitive [2, 3] (for example people form cliques in social net-
works and web pages of similar content have links to one an-
other) there is no disciplined, context-independent definition
of what communities are [2, 4]; we adopt here the loose defi-
nition that these modules are subgraphs with more links con-
necting the nodes inside than outside them [2, 3, 5]. The task
of identifying such subgraphs in a given network can be chal-
lenging [1, 2], both in terms of recognition and computational
feasibility.

One of the key issues in community detection is describ-
ing the overlapping nature of network modules. Traditional
‘hard-partitioning’ algorithms [6–9] may yield excellentiden-
tification results, but omit the important characteristic of real-
world networks where a node may participate in more than
one group (for example, individuals belong to various so-
cial circles and scientists may participate in more than one
research group). A popular approach to tackle this problem
is the Clique Percolation Method (CPM) by Pallaet al. [10],
which is based on the belief that communities are unions
of adjacentk-cliques (complete graphs withk nodes) and
that inter-community regions of the network do not possess
such strong link density. Because communities are defined as
the largest network component containing adjacentk-cliques
(cliques sharingk−1 nodes), overlaps arise naturally between
modules. Performance may be compromised for networks
with weak clique presence, because many nodes are left out,
or for networks with very high link density, because we reach
the trivial solution of describing the network as a single com-
munity.

Other approaches include the algorithm of Lancichinetti
et al. [11], which seeks a local maximum of the community
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‘fitness’ function (based on internal link density) by modi-
fying nodes’ community ‘appropriateness’ scores through a
series of inclusion-exclusion moves. The work of Evans and
Lambiotte [12] detects communities of links — in contrast
to node communities, which occupy the vast body of the lit-
erature [2, 3] — after losslessly transforming the adjacency
matrix to a line graph. By assigning links, rather than nodes,
among communities, the method allows a node to participate
naturally in more than one group, as determined by the la-
bels assigned to its adjacent links. The advantages of this ap-
proach have also been presented by Ahnet al. in [13]. Fi-
nally, Nepuszet al. [14], propose that communities should
comprise ’similar’ nodes, assuming that a distance metric be-
tween nodes is defined and that similarity is inversely related
to distance. When a partition matrix, representing a reason-
able community partition, is multiplied by itself it would then
be expected to approximate the similarity matrix; this leads to
a nonlinear constrained optimization problem. The number of
communities of the proposed incidence matrix is selected by
performing multiple runs and selecting the one with the high-
est fitness score based on a Newman modularity-like function.
Further discussion on similar methods, along with a compre-
hensive review of community detection algorithms in general,
is presented in a survey by Fortunato [2].

In this work we propose a novel approach to community de-
tection based on computationally efficient Bayesian nonnega-
tive matrix factorization (NMF) [15]. The advantages of this
methodology are: i) overlapping or soft-partitioning solutions,
where communities are allowed to share members; ii) soft-
membership distributions, which quantify ‘how strongly’ each
individual participates in each group; iii) excellent module
identification capabilities; and iv) the method does not suffer
from the drawbacks of modularity optimization methods, such
as the resolution limit. In the following section we presentthe
theoretical foundations of our approach along with an illustra-
tive example to provide intuition behind the method. Follow-
ing the model formulation section, we test our algorithm on
a variety of artificial and real-world benchmark problems and
present our experimental results.
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II. MODEL FORMULATION

A. Generative Model

We consider the generative graphical model of Fig. 1. The
observed variablevij denotes the nonnegative count of inter-
actions between two individualsi, j in a weighted undirected
network with adjacency matrixV ∈ R

N×N
+ . In the commu-

nity detection context, we assume that there are a numberK of
‘hidden’ classes of nodes in the network that affectvij . Thus
we can define allocations of nodes to communities as latent
(unobserved) variables that allow us to explain the increased
interaction density in certain regions of the network: the more
two individuals interact the more likely they are to belong to
the same communities, and vice versa.

K
N

hkj

wik

βk

a

b

vij

FIG. 1. (Color online) Graphical model showing the generation
of count processesV from the latent structureW and H, the
components of which have scale hyperparametersβk. The hyper-
hyperparametersa, b are fixed.

We assume that the pair-wise interactions described in
V are influenced by an unobservedexpectation network̂V,
where eacĥvij denotes the expected number of interactions
(or expected link weight) that take place betweeni andj. The
expectation network is composed of two nonnegative matrices
W ∈ R

N×K
+ andH ∈ R

K×N
+ so thatV̂ = WH. We hence

model each interactionvij as drawn from a Poisson distribu-
tion with rate v̂ij =

∑K

k=1 wikhkj . The inner rankK de-
notes the unknown number of communities and each element
k ∈ {1, ...,K} in row i of W and columnj of H represents
the contribution of a single latent community tov̂ij . In other
words, the expected number of timesv̂ij that two individuals
i, j interact is a result of theirmutual participationin the same
communities.

In the typical community-detection setting, the value ofK,
which we callcomplexityor model order, is initially unknown.
In previous work [16, 17], the issue of inferring the appropri-
ate number of communities has been addressed by performing
multiple runs for variousK and selecting one that yields the
highest Newman modularityQ [5]. In our setting, the ap-
propriate model order arises naturally from asingle run, by
placingshrinkageor automatic relevance determinationpri-

ors [18] with scale hyperparametersβ = {βk} on the latent
variableswik, hkj , as presented in [15]. By starting with a
largeK (sayN , which is the maximum possible number of
communities), the effect of these priors is to moderate com-
plexity by ‘shrinking’ close to zero irrelevant columns ofW

and rows ofH that do not contribute to explaining the ob-
served interactionsV. This is achieved by placing a distribu-
tion over the latent variableswik, hkj whose expectation ap-
proaches zero unless non-zero values are required by the data.
This approach avoids the computational load of multiple runs
and is free of the resolution bias problems [19] of modularity.

Based on the graphical model of Fig. 1, where the distribu-
tion of βk is parameterized by fixed hyper-hyperparametersa
andb, we express the joint distribution over all variables as:

p(V,W,H,β) = p(V|W,H)p(W|β)p(H|β)p(β), (1)

hence the posterior over model parameters given the observa-
tions is:

p(W,H,β|V) =
p(V|W,H)p(W|β)p(H|β)p(β)

p(V)
. (2)

B. Posterior-based cost function

We aim to maximize the model posterior given the observa-
tions, or equivalently, to minimize the negative log posterior,
which may be regarded as an energy (or error) functionU .
Noting thatp(V) is a constant w.r.t. the inference over the
model’s free parameters, we hence define:

U = − log p(V|W,H)−log p(W|β)−log p(H|β)−log p(β),
(3)

where the first term is the log-likelihood of our data, derived
from the probabilityp(V|W,H) = p(V|V̂) of observing ev-
ery interactionvij given a Poisson ratêvij . Therefore we ex-
press the negative log-likelihood of a single observationvij
as:

− log p(v|v̂) = −v log v̂ + v̂ + log v!. (4)

Using the Stirling approximation to second order, namely:

log v! ≈ v log v − v +
1

2
log(2πv), (5)

Eq. (4) can be written as:

− log p(v|v̂) ≈ v log
(v

v̂

)

+ v̂ − v +
1

2
log(2πv), (6)

thus the full negative log-likelihood for all the observed data
is:
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− log p(V|V̂) = −
N
∑

i=1

N
∑

j=1

log p(vij |v̂ij) ≃
N
∑

i=1

N
∑

j=1

(

vij log
vij

v̂ij
+ v̂ij − vij +

1

2
log(2πvij)

)

+ κ, (7)

whereκ is a constant.
Following [15] and similar models for probabilistic PCA

[20] and ICA [21–23], we place independent half-normal pri-
ors over the columns ofW and rows ofH with precision
(inverse variance) parametersβ ∈ R

K = [β1, ..., βK ]. The
negative log priors overW andH are then given by:

− log p(W|β) = −
N
∑

i=1

K
∑

k=1

logHN (0, β−1
k )

=
N
∑

i=1

K
∑

k=1

(

1

2
βkw

2
ik

)

−
N

2
log βk + κ,(8)

− log p(H|β) = −
K
∑

k=1

N
∑

j=1

logHN (0, β−1
k )

=
K
∑

k=1

N
∑

j=1

(

1

2
βkh

2
kj

)

−
N

2
log βk + κ. (9)

Eachβk controls the importance of communityk in explain-
ing the observed interactions; large values ofβk denote that
columnk of W and rowk of H have elements lying close to
zero and therefore represent irrelevant communities. By as-
suming theβk are independent1 we place a standard Gamma
distribution over them with fixed hyper-hyperparametersa, b
[25]. The negative log hyper-priors are thus:

− log p(β) = −
K
∑

k=1

log G(βk|a, b)

=

K
∑

k=1

(βkb− (a− 1) log βk) + κ. (10)

The objective functionU of Eq. (3) can be expressed as the
sum of Eq. (7) through (10):

U =
∑

i

∑

j

[

vij log

(

vij

v̂ij

)

+ v̂ij

]

+
1

2

∑

k





(

∑

i

βkw
2
ik

)

+





∑

j

βkh
2
kj



− 2N log βk





+
∑

k

(βkbk − (ak − 1) log βk) + κ. (11)

1 This corresponds to the belief that the existence of one community is not
dependent upon others. Clearly, there will be situations inwhich this can
be extended to allow for a full inter-dependency between communities. We
do not consider this here, however. Allowing dependency is similar to the
notion ofstructure priorsdiscussed in [24].

C. Parameter inference

To optimize Eq. (11) forW,V andβ we follow [15, 26–
28] by adopting the fast fixed-point algorithm presented in
[15] that involves consecutive updates ofW,H, andβ until
a convergence measure has been satisfied (a maximum num-
ber of iterations, or a tolerance on the cost function). The
pseudocode is presented in Algorithm 1; we discuss mem-
ory and computational efficiency in the discussion section
of this paper. The solution consists ofW⋆ ∈ R

N×K⋆

+ and
H⋆ ∈ R

K⋆×N
+ for whichV̂ = W⋆H⋆ represents the expecta-

tion network given our observation dataV and prior assump-
tions. The inner rankK⋆ denotes the inferred number of latent
modules in the network.

Algorithm 1 Community Detection using NMF

Require: adjacency matrixV ∈ R
N×N

+ , initial K0, fixed Gamma
hyperparametersa, b.

Define: matrix operationX
Y

aselement-by-elementdivision.
Define: matrix operationX · Y aselement-by-elementmultiplica-

tion.
Define: B ∈ R

K×K as a matrix with elementsβk in the diagonal
and zero elsewhere.

1: Auxiliary inputs W0,H0 from previous runs. If not present,
initialise to random values.

2: for i = 1 to niter do
3: H←

(

H

WT1+BH

)

·
[

W
T
(

V

WH

)]

4: W←
(

W

1HT+WB

)

·
[(

V

WH

)

H
T
]

5: βk ←
N+a−1

1

2

(

∑

i w2

ik
+
∑

j h2

kj

)

+b

6: end for
7: K⋆← # of non-zero columns ofW or rows ofH
8: W⋆←W with zero columns removed
9: H⋆←H with zero rows removed

10: return W⋆ ∈ R
N×K∗

+ ,H⋆ ∈ R
K∗×N

+

In the case of undirected graphs,W⋆ = H
T

⋆ (asV is sym-
metric) and represents theN×K⋆ incidence matrix of a bipar-
tite graph ofN nodes andK⋆ communities. Each elementw⋆

ik

(orh⋆
ki) denotes thedegree of participationof individuali into

communityk while each normalized row ofW⋆ (or column
of H⋆) expresses asoft-membershipdistribution over commu-
nities given a certain node. Therefore this bipartite graphde-
scribes theoverlappingmesoscopic structure of our network,
where nodes are allocated to multiple groups with varying par-
ticipation score.

The overall interaction matrixV is approximated by a sum
V̂ =

∑

k w
⋆
·kh

⋆
k·, wherew⋆

·k is the column andh⋆
k· row vector

of the community matricesW⋆ andH⋆ respectively. There-
fore, V̂ is a summation ofK rank 1 matriceŝV(k) = w⋆

·kh
⋆
k·

and eachV̂(k) denotes the expected number of pairwise in-
teractionsin the context of communityk. Thus if two nodes
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i, j have non-zero participation ratesw⋆
ik, h

⋆
kj to community

k, then the average link weight for this dyad would also be
non-zero due tôV(k)

ij = w⋆
ikh

⋆
kj .

Based on the above, our model assumes that the joint mem-
bership of two nodes in the same community raises the proba-
bility of a link existing between them. Therefore, our method
performs best when modules are dense, with the best-case
scenario being that each community is a fully connected sub-
graph.

In the next section, we present an illustrative example of
this community extraction scheme, followed by experimental
results from various artificial and real-world networks.

III. APPLICATIONS

A. An illustrative example

Consider the small toy graph of Fig. 2 withN = 16 nodes
andM = 25 edges of varying weights. We extract the meso-
scopic (community) structure of this network using NMF,
along with the popular Extremal Optimization (EO) [9], Spec-
tral Partitioning (SP) [29] and Weighted Clique Percolation
Method (wCPM) [30].
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FIG. 2. (Color online) An undirected weighted toy graph with 16
nodes. The three different line styles denote the differing strengths
of interaction within each pair of nodes.

Although a trivial problem at first glance, each community
detection method we applied yielded different modules and
node allocations, as seen in Fig. 3. Hard-partitioning methods
such as EO and SP produce such inconsistencies mainly due
to the ‘broker’ nature of nodes such as6, 9 or 10 that lie on
high-flow paths in the network, making them difficult to as-
sign on one module or the other [2]. Although this issue is
addressed by wCPM, which allows node membership to mul-
tiple modules, it does not provide some measure of ‘participa-
tion strength’ or ‘degree of belief’ in membership.

By applying NMF we extractedK⋆ = 4 overlapping groups
as shown in Fig. 4. We can see that our method does not
force node allocations to a single group, but instead allows
the ‘broker’ individuals described above to participate inmore
than one community. Thissoft-partitioningsolution allows us
to describe the different aspects of an individual’s sociality
as a collection of (possibly intersecting) sets of nodes, where
each set may play a different role or function in the whole
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FIG. 3. (Color online) Node allocations to communities for three
different community detection methodologies.
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FIG. 4. (Color online) Our toy graph decomposed intoK⋆ = 4
overlapping communities using NMF.

network [2].
Allocating nodes to multiple modules, as in Fig. 4, is only

one part of the solution. We also capture thedegree of par-
ticipationof nodes in each community by using the incidence
matrixW⋆ described in the previous section. Fig. 5(a) shows
W⋆ ∈ R

16×4
+ where different colours indicate various levels

of participation of nodes in communities. We can see that the
matrix is not of a clear block diagonal form, as an individual
can have some form of membership in multiple groups.

In our framework, community allocation is not a Boolean
decision but abelief; each node is assigned a membership
distributed over communities, as seen in Fig. 5(b). We can
see that mediator nodes of high ‘betweenness’, such asi = 6,
have a more entropic distribution (similar to the concept of
‘bridgeness’ [14]) while for nodes such asi = 4 or i = 14 we
have much more confident allocations.

B. Benchmark graphs with community structure

Having soft-membership distributions not only allows us to
describe our confidence in assigning nodei to communityk,
but also to quantify the degree of ‘fuzziness’ in the network.
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FIG. 5. (Color online) Fig. 5(a) shows the node allocations proposed
by our algorithm. Colours close to white indicate strong partici-
pation of nodei (vertical axis) to communityk (horizontal axis).
Fig. 5(b) shows example (normalized) rows ofW⋆ that correspond
to the membership distribution of different nodes.

In Fig. 5(b), nodes such asi = 6 that lie on community bound-
aries have a membership distribution that is closer to uniform.
We hence expect our method to indicate networks with little
degree of modular organization. We apply the NMF method
to realizations of the very popular Newman-Girvan (NG) ran-
dom graph [31]. This benchmark tests the module identifi-
cation capabilities of a method against an artificial graph of
N = 128 nodes, observed solution ofC = 4 communities
(with n = 32 nodes each), average degree of〈k〉 = 16 and a
variableinter-communitydegree〈kout〉 that controls the mod-
ule cohesiveness of the network.

In Fig. 6(a) we plot our module identification performance
based on the Normalized Mutual Information (NMI) criterion
[32], a real number between 0 and 1 which is maximal when
the detected communities exactly meet expectations. In 6(b)
we monitor our allocation confidence based on the mean en-
tropy (in bits)H = −

∑K

k=1 wik log2 wik of each node mem-
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(a)Normalized Mutual Information, value range 0–1.
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FIG. 6. (Color online) Fig. 6(a) compares the NMF (dashed⋄-line
at the top) approach against Extremal Optimization (EO) (pale�-
line at the top), Spectral Partitioning (SP) (◦-line) and Hierarchical
Clustering (Hierarchical) (⊲-line) in identifying the communities of
Newman-Girvan artificial graphs. Each point is the mean of 100
graph realizations. Fig. 6(b) shows the increase in uncertainty in as-
signing nodes to communities, as we increase the fuzziness of mod-
ular organization in NG graphs. Each point is the mean of 100 graph
realizations.

bership distribution. We can see that as we make the net-
work fuzzier by increasing〈kout〉, our method ‘responds’ by
increasing the degree of node participation to multiple com-
munities. An attractive aspect of this test is that the increase
in entropy (see Fig. 6(b)) does not affect the module identifi-
cation performance (we see from Fig. 6(a) that NMI remains
close to unity) and is stable for the vast majority of〈kout〉 val-
ues. For comparison, we also provide in Fig. 6(a) the NMI
performance of some popular hard-partitioning methods: Ex-
tremal Optimization [9], Spectral Partitioning [29], and Hier-
archical Clustering [2]. For hierarchical clustering, angular
distance acted as node similarity and complete-linkage clus-
tering acted as group similarity; this combination has been
empirically found to be optimal [2].

We extend the above test to the case of Lancichinetti-
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Fortunato random graphs (LFR) [33], which reflect more ac-
curately the properties of real-world networks. In this set-
ting, community cohesion is controlled bymixing parame-
tersµk andµw, which denote the expected fraction of inter-
community degrees and weights per node. Other configura-
tion parameters include the total number of nodesN , the av-
erage degree〈k〉, the exponent of the degree distributionγ1,
and the exponent of the community-size distributionγ2. We
tested our method for a (decaying) range of values forµk, µw

(where we setµk = µw), in weighted graphs ofN = 1000
nodes and various values of〈k〉, as seen in Fig. 7(a). In the
same spirit as the NG graph case, in Fig. 7(b) we monitor the
mean entropy of membership distributions per node (in bits)
to quantify the confidence of our node allocations to commu-
nities. In Fig. 7(a) we can see that our model has an excellent
module identification performance and starts to fail only when
the mixing coefficientsµ have values greater than 0.5, denot-
ing no community organization in the graph. On the other
hand, the increasing fuzziness of the network (based onµ) is
captured in the mean entropy of the membership distributions;
as the community structure is less cohesive, we are less confi-
dent in the allocation of nodes to groups.

C. Real-world datasets

We present the performance of our community detection
method on a variety of popular benchmark datasets and com-
pare it against the Extremal Optimization (EO) [9] and Lou-
vain [6] methods. In contrast to the artificial graphs we used
above, the absence of an ‘observed solution’ for these prob-
lems prevents us from using the Normalized Mutual Informa-
tion criterion for performance evaluation. Instead we use the
popularmodularityQ [5], which is a measure of how ‘sta-
tistically surprising’ the intra-community link density is for
a proposed network partition. For the purposes of the exper-
iment, we remove the overlapping aspect of the NMF solu-
tions by assigning a node to a single community; the one for
which it has the maximum degree of membership. Although
this ‘greedy allocation’ scheme omits the wealth of informa-
tion provided by our model solutions, it is necessary in order
to perform modularity comparisons against hard-partitioning
methods. Comparison with Clique Percolation is also absent,
as it provides a uniform participation score of nodes to mod-
ules, thus no ‘greedy allocation’ can by applied. For each
dataset, we ran the three methods 100 times, recording the
values ofmodularityQ along with the number of extracted
communitiesK⋆. The values are reported in Tables II and III;
because the Louvain method demonstrated stable behaviour
across different runs, its standard deviations have been omit-
ted. For NMF initialization we usedK0 = N with hyperpa-
rametersa = 5 andb = 2, giving a vague prior. We note that
the results are not very sensitive to changes in these values.

From Table II we can see that our approach performs com-
petitively despite not being designed with the aim of maxi-
mizing modularity, unlike EO and the Louvain method. Ad-
ditionally, it has the advantage of providingsoft-partitioning
solutions and nodemembership scoresto each community. Fi-

1 2 3 4 5 6

0.8

0.85

0.9

0.95

1

µ
k
 = µ

w
 degree and weight mixing coefficient

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

 

 

<k> = 15
<k> = 20
<k> = 25

(a)Normalized Mutual Information, value range 0–1.

1 2 3 4 5 6

1

1.5

2

2.5

3

µ
k
 = µ

w
 degree and weight mixing coefficient

M
ea

n 
E

nt
ro

py
 (

in
 b

its
)

 

 

<k> = 15
<k> = 20
<k> = 25

(b)Mean entropy of membership distribution.

FIG. 7. (Color online) Results of the NMF method on realizations
of the LFR random graphs forN = 1000 and different values for
the average degree〈k〉 and community cohesionµ parameters. Each
point represents the mean and standard deviation over 100 graph re-
alizations.

TABLE I. Real world datasets
Dataset N M

Dolphins [34] 62 159
Books US Politics [35] 105 441

Les Miśerables [36] 77 254
College Football [31] 115 613

Jazz Musicians [37] 198 2742
C. elegans metabolic [9]453 2025

Network Science [5]1589 2742
Facebook Caltech [38] 769 16656

nally, although our method favours sparse solutions, it does
not suffer from the resolution limit [19] of modularity op-
timization methods such as EO, where smaller groups are
merged together [3, 19], leading to a smaller number of com-
munities, as seen in Table III.

Figure 8 illustrates the first network in Table I, in which ver-
tices are situated according to the Kamada-Kawai free-energy
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TABLE II. Modularity results for NMF, EO and Louvain methods

Dataset NMF EO Louvain

Dolphins 0.47± 0.03 0.51± 0.01 0.52
Books US Politics 0.52± ǫ 0.48± 0.01 0.50

Les Miśerables0.53± 0.02 0.53± 0.01 0.57
College Football 0.60± ǫ 0.58± 0.01 0.60

Jazz Musicians0.43± 0.01 0.42± 0.01 0.44
C. elegans metabolic0.36± 0.01 0.40± 0.09 0.43

Network Science0.83± 0.01 0.86± 0.01 0.95
Facebook Caltech0.38± 0.01 0.37± 0.01 0.37

TABLE III. Number of communities from the NMF, EO, and Lou-
vain methods

Dataset NMF EO Louvain

Dolphins 6.67± 0.83 4± 0 5
Books US Politics 6.23± 0.62 4.04± 0.4 3

Les Miśerables 9.97± 0.78 4.96± 1.72 6
College Football 8.86± 0.79 8± 0 10

Jazz Musicians 8.57± 8.89 4± 0 4
C. elegans metabolic15.69± 1.14 7.96± 1.06 10

Network Science342.53± 5.28 58.24± 12.36 418
Facebook Caltech 24.28± 1.72 6.84± 1.82 10

technique in Pajek software [39]. The hard partitioning of the
Louvain method can be contrasted with the soft partitioningof
an example run of the NMF method, in which vertices near the
boundary of two or more communities are represented by pie
charts in a manner similar to that used by Ballet al. [40]. With
the aid of the aforementioned ‘greedy allocation’ scheme, the
NMF community assignments agree with the Louvain com-
munity assignments for 55 of the 62 nodes. Of the seven mis-
matches, six correspond to the putative additional community
(here coloured dark green, in the dense central portion of the
figure) postulated by the Louvain method; NMF replaces this
tiny community with soft partitioning among the other com-
munities. The seventh mismatch occurred for a node con-
nected to two red nodes and two pink nodes; the Louvain
method allocated it to the pink community whereas NMF al-
located it to the red and pink communities in the approximate
proportion of 51:49.

D. Graphs without community structure

We present the behaviour of NMF in cases in which there
is no community structure in the network, specifically focus-
ing on the popular Erd̈os-Ŕenyi (ER) random graphs. In such
graphs, each link exists with a probabilityp which is common
for any pair of nodes in the graph. Additionally, the probabil-
ity of link formation at a given pair of nodes is independent
of the presence of other links. This eliminates the tendencyto
form closed triangles and cliques that characterize real-world
networks.

Therefore given various realizations of an ER graph family
G(N, p) (N number of nodes andp probability of pair con-
nection), we want our method to be able to capture such ab-
sence of mesoscopic organization, instead of declaring com-

FIG. 8. (Color online) The Dolphins network [34], with (A) hard
partitioning as per the Louvain method and (B) soft partitioning as
per the NMF method. Node size increases nonlinearly with vertex
degree, and soft partitions are shown as pie charts.
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FIG. 9. (Color online) Modularity of network partitions of four com-
munity detection algorithms, ran on realizations of an ER graph fam-
ily G(100, p). Each point represents the mean and standard devia-
tion of modularity over 100 instances ofG(100, p).

munity structure when there is none. In Fig. 9 we compare
NMF against three modularity-based methods: Extremal Op-
timization (EO), the Louvain method, and Spectral Partition-
ing, based on theQ value of their extracted network partitions,
in realizations of an ER graph classG(100, p). We control
the ‘network load’ (number of links in the graph) by changing
the value ofp. For each value ofp we generate 100 graphs,
run community detection with each algorithm, and record the
modularity values. The generated ER graphs we used have no
disconnected components.

In Fig. 9 we can see that EO (black◦-line), Louvain (light
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dashed line) and SP (�-line) produce significantly higher
modularity values than NMF (bottom×-line), especially for
sparse realizations of the Erdös-Ŕenyi random graph, denot-
ing the presence of modular organization. However, those
highQ values do not correspond to any community structure,
as Erd̈os-Ŕenyi random graphs do not possess it by design.
On the other hand, NMF has a more stable behaviour as all
modularity values are close to zero, indicating that nodes have
no ‘preference’ of being connected with members of the same
group or otherwise. Especially for the case of sparse graphs
with p ≃ 0.1, EO and Louvain achieve higher modularity val-
ues; in particular, they are very close toQ = 0.3, a thresh-
old above which Newman and Girvan consider community
structure to be present [5]. This overestimation of modularor-
ganization can be very misleading, especially when studying
real-world networks which are usually sparse [41] due to their
power-law degree distribution. Therefore, if certain modular-
ity optimization methods produce higherQ values than NMF,
it might not mean necessarily that they have found a node con-
figuration that denotes better community structure.

IV. IMPLEMENTATION DETAILS AND COMPLEXITY

As discussed in Section II C, parameter inference is per-
formed by a series of update equations for the latent variables
in the model. The computational load is governed chiefly by
the matrix multiplicationWH appearing in the denominator
of the element-by-element divisionV

WH
in steps 3 and 4 of

Algorithm 1, which is of orderO(N2K). In practice, such
cost can be significantly reduced if we exploit the sparse na-
ture of adjacency matrices [42]: the dot products

∑

k wikhkj

within WH need not be calculated whenvij = 0, thus re-
ducing significantly the effect of the quadratic termN2 in our
theoretical complexity expression. For the case of undirected
networks, in whichV = V

T, the dot product operations are
halved becauseWH is symmetric, and halved again because
step 4 of Algorithm 1 is redundant (W = H

T).
Holistic community detection methods such as NMF, which

operate upon the full adjacency matrixV, can be memory in-
efficient when implemented naively. The quadratic complex-
ity, O(N2), can be mitigated by loading into memory only
certain columns/rows ofV when needed, as no holistic op-
erations (such as inversion or multiplication) are required by
Algorithm 1 forV or V̂. In addition, all element-by-element
division and multiplication operations should be parallelized,
as there are no data dependencies among the threads.

V. DISCUSSION AND FUTURE WORK

In the present work we described a novel approach to com-
munity detection that adopts a Bayesian nonnegative matrix
factorization model to achieve soft partitioning of a network
in a computationally efficient manner. We have demonstrated
how community detection can be seen as a generative model
in a probabilistic framework in which priors exist over the
model parameters. This enables model order selection, which

in our framework is the number of latent communities (or
classes of nodes) in the data. We also showed that the degree
of participation of two individuals in various communitiesis
a latent generator of the expected number of interactions be-
tween them.

Following the model formulation section, we demonstrated
how NMF not only captures the membership of a node in mul-
tiple communities, but also quantifies how strongly that indi-
vidual participates in each of the groups. By using the entropy
of the node membership distribution, we can identify ‘core’
nodes in each community or, inversely, ‘broker’ nodes that
act as mediators between different groups. At a global level,
the mean entropy of the membership distributions can help us
quantify the degree of ‘fuzziness’ in the network, or the clarity
of community structure. Network visualization tools can also
be improved in this manner, as the degree of membership over
different communities can be utilized to position an individual
in a cloud of nodes.

We also showed that NMF has a competitive performance
against popular community detection methods, on various
popular network datasets. Although NMF is not a method
aiming to maximize modularity,Q, it competes well with
methods that directly maximize modularity and we have
showed that it can even outperform these methods in several
module identification problems, while at the same time having
the advantage of providing soft-partitioning solutions.

This work addresses the issue of extracting community par-
titions from a single interaction network defined byV. We
acknowledge that in many problems, this matrix describes
only a ‘snapshot’V(t) of a time-evolving, dynamic complex
system. Therefore, we seek to extend our community detec-
tion method to allow for a time-evolving solution space. At
present we are approaching this via a jump-diffusion model
(based around a Markov model), in which rate parameters are
allowed to evolve with time and the structure of the commu-
nity solutions may also have abrupt changepoints [43]. Our
aim is to evaluate this approach in time-evolving systems in
order to model community drifts and the transitions from one
community structure to another.

Our current method produces point estimates for the model
parameters via amaximum a posteriori(MAP) scheme. A
fully Bayesian treatment can be employed via Reversible
Jump MCMC as presented in [44, 45], or via the use of varia-
tional Bayes as derived in [45]. The advantage of a posterior
distribution over quantities such as the inner rank dimension-
ality K is that we can see at which resolutions modular orga-
nization is most prevalent.

We also acknowledge that NMF, along with the majority of
community-detection methods, assumes a fully observed ad-
jacency matrix. This is not the case in many real-world appli-
cations in which data-collection limitations arise; for example
when the system under study is sampled or when sensors fail
to record every observation. However, NMF can be easily ex-
tended to allow for missing data [45].

Finally, in this paper we considered cases of undirected
networks with symmetric interaction matricesV. Although
NMF does not allow the presence of negative links in the
graph, it is still possible to consider the popular cases of asym-
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metric communication rates that arise in systems such as email
or telephone networks.
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