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Abstract Crowdsourcing has become a popular means for quickly achieving
various tasks in large quantities. CollabMap is an online mapping application in
which we crowdsource the identification of evacuation routes in residential areas
to be used for planning large-scale evacuations. So far, approximately 38,000
micro-tasks have been completed by over 100 contributors. In order to assist with
data verification, we introduced provenance tracking into the application, and ap-
proximately 5,000 provenance graphs have been generated. They have provided
us various insights into the typical characteristics of provenance graphs in the
crowdsourcing context. In particular, we have estimated probability distribution
functions over three selected characteristics of these provenance graphs: the node
degree, the graph diameter, and the densification exponent. We describe methods
to define these three characteristics across specific combinations of node types
and edge types, and present our findings in this paper. Applications of our meth-
ods include rapid comparison of one provenance graph versus another, or of one
style of provenance database versus another. Our results also indicate that proven-
ance graphs represent a suitable area of exploitation for existing network analysis
tools concerned with modelling, prediction, and the inference of missing nodes
and edges.

1 Introduction

Crowdsourcing is an increasingly popular approach for tasks that computers find too
difficult to solve; the method distributes tasks among human contributors, often through
a website. For instance, citizen-science projects at Zooniverse (www.zooniverse.org)
have managed to enlist hundreds of thousands of volunteer “citizen scientists” to clas-
sify distant galaxies, transcribe historical naval logs, and more. The volunteers con-
tribute data of a quality that is as varied as their backgrounds and expertise. Usually
cross-verification among participants helps to discard inaccurate results, yet challenges
remain in anticipating how different human contributors will behave and in designing a
robust crowdsourcing application.
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CollabMap (www.collabmap.org) is an online mapping application in which we
crowdsource the task of identifying residential evacuation routes, with the eventual aim
of helping to plan large-scale evacuations in case of disaster. In an effort to address the
aforementioned human challenges, we introduced provenance tracking into CollabMap,
capturing in detail how contributors trace buildings and draw evacuation routes, and not-
ing the dependencies among their contributions. The resulting provenance graphs allow
us to re-create the situations in which the data were generated and to inspect them for
potential inaccuracies. In order to gain an understanding of the common characterist-
ics of these graphs, here we carry out an analytical study on various network measures
and report our findings. Other researchers have viewed provenance graphs in alternate
ways: Altintas et al. [1] have analysed them as collaboration networks, and Margo et al.
[11] have used them as a basis for node classification. The present work offers a deeper
level of mathematical abstraction, and our contributions are twofold. First, we estimate
probability distribution functions over three selected characteristics of these proven-
ance graphs: the node degree, the graph diameter, and the densification exponent; to
our knowledge we are the first to analyse provenance graphs in this way. Second, we
devise provenance-specific network measures for provenance graphs, to gauge whether
such measures provide a novel insight into provenance graphs, or whether generic net-
work measures are enough. We are also exploring the question of whether provenance
graphs, at least those from crowdsourcing contexts, are suitable candidates for existing
network methods that support graph modelling, prediction, and the inference of missing
nodes and edges.

The remainder of the paper is organized as follows. Section 2 provides a summary
of the CollabMap application, including how it works and how provenance was mod-
elled. In Section 3, we describe a range of techniques to extract characteristics from the
CollabMap provenance graphs. Section 4 reports our main findings, and the paper is
concluded with a discussion in Section 5.

2 CollabMap

In planning the responses to city-wide disaster scenarios, simulating large-scale evac-
uation is a major challenge, owing in part to the lack of detailed evacuation maps for
residential areas. These maps need to contain evacuation routes connecting building
exits to the road network, while avoiding physical obstacles such as walls or fences.
Existing maps do not provide such routes. To our knowledge, automated techniques to
augment current maps with such paths are not available, and direct surveys of city-scale
residential areas are usually infeasible owing to the significant effort required. Against
this background, CollabMap was developed to crowdsource the drawing of evacuation
routes for the public by providing them with two freely available sources of information
from Google Maps: aerial imagery and ground-level panoramic views. During a recent
two-month trial on the website we established, contributors were awarded cash-prize
lottery tickets in proportion to the number of contributions they made. Our ongoing
application has so far produced 5,128 provenance graphs for 37,931 micro-tasks com-
pleted by over 100 contributors.



2.1 CollabMap Workflow

Based on the Find-Fix-Verify pattern [3], we divide the task of identifying evacuation
routes for a single building into smaller activities, called micro-tasks, carried out by
different contributors. We have designed five types of micro-task:

A. Building Identification The outline of a building is drawn on the map. It serves as
the basis for the other micro-tasks.

B. Building Verification The building outline is assessed, with a vote of either valid
(+1) or invalid (−1).

C. Route Identification An evacuation route is drawn, to connect an exit of the build-
ing to a nearby road.

D. Route Verification The evacuation route is assessed, with a vote of either valid (+1)
or invalid (−1).

E. Completion Verification The set of evacuation routes is assessed for exhaustive-
ness, with a vote of either complete (+1) or incomplete (−1).

Figure 1. The CollabMap workflow for identifying evacuation routes of a building.

The CollabMap workflow (Figure 1) has two main phases:

Building phase The outline of a building that has no evacuation route needs to be
drawn (A). The outline is then checked by other contributors, who vote up or vote



down the building outline (B) without seeing others’ votes. If the total score of the
building, defined as the sum of all the votes, reaches +3 then the Building phase
ends and the Evacuation route phase begins. If the score reaches −2, the building
outline is rejected and marked as invalid.

Evacuation route phase This is the main activity carried out by CollabMap contrib-
utors. The first is permitted only to draw a route (C). Subsequent contributors are
asked to verify routes (D) and are asked whether the set of routes is complete (E);
if it is not, they are invited to draw new routes (C).

In both phases, in order to avoid biases, a contributor is not allowed to verify his or her
own work.

2.2 Recording provenance

We adopted the Open Provenance Model (OPM) [13] for capturing the provenance of
data generated in the CollabMap application. The micro-tasks in the previous section
generate data of four different types: building outlines, evacuation routes, route sets
(collections of routes belonging to a building), and votes. The classes for these data
types are Building Outline, Route, Route Set, and Vote, respectively (see Figure 2).
In order to keep separate the application-specific data from the provenance-related in-
formation, OPM constructs were recorded in their own classes: Artefact representing
a data entity (via the subject relation), Agent a CollabMap contributor, and Process an
instance of one of the five types of micro-task above.

Figure 2. The UML class model for CollabMap’s data and provenance classes. Data Product
and Votable are abstract classes.

When a contributor completes a micro-task, this is recorded as a process along with
timing information (namely, how long it takes; see Figure 3 for an example). We also
record the artefacts (equivalently, the corresponding data products) that were gener-
ated by the process (via the wasGeneratedBy relation), and we record which existing
artefacts were shown to the contributor in the micro-task (via the used relation). Own



  user2user3

user1

Building Identification 1886 41s

Building3090.0

UpVote3091.0

votedOn

Building Verification 7924 7s

used

DownVote14100.0

votedOnBuilding Verification 26467 3s

used

UpVote41570.0

votedOn

Figure 3. An example OPM provenance graph recorded by CollabMap showing a building was
drawn and voted on by three different users.

knowledge of the internal workings of CollabMap also enabled us to assert various
direct relations between artefacts (via the hasAnnotation relation in Figure 2): wasDe-
rivedFrom, wasRevisionOf, includes, and votedOn. The last three are special cases of
the wasDerivedFrom relation, and were treated as such in our analyses in subsequent
sections.

2.3 Provenance graphs

Newman [14] describes four types of network: technological, social, biological, and
informational. Provenance graphs fall into the last category, as they are networks de-
scribing relationships among elements of information. Other examples of informational
networks include those which describe co-authorship of academic articles, semantic
relationships among words, and peer-to-peer exchanges of online content. Using the
vocabulary associated with the collection of relational network data, our CollabMap
provenance graph data are enumerated as opposed to being partial or sampled; that is,
they are collected in an exhaustive manner from the full population. Our population
concerns the totality of the CollabMap data set as of March 2012.

We create a graph G = (V,E), with vertex set V and edge set E. Edges in the present
work are unweighted and directed, but our design is extensible to weighted edges, to
indicate reliability of connection or other probabilistic phenomena. Five edge types are
defined by the OPM: used, wasGeneratedBy, wasControlledBy, wasDerivedFrom, and
wasTriggeredBy. In the current work we recorded all but the last of these, in addition
to all three possible node types: artefacts, processes, and agents. Node type is the only
vertex attribute currently under study in our provenance graphs, but it is possible to
assign additional attributes, either discrete (for example a classification indicating the



(a) b)

Figure 4. Provenance graphs for two typical CollabMap tasks, in which artefacts are white, pro-
cesses are grey, and agents are black. Vertex size increases with degree logarithmically.

level of experience of each agent), or continuous (for example, a probabilistic estimate
of how often an agent errs during the evaluation of route evacuations).

To aid graph visualization in Figure 4, vertices in V are represented as circles col-
oured by node type, and edges in E are represented as straight lines. The graph is drawn
in two-dimensional space, but it is possible to imagine the same information appearing
in three-dimensional space or on another surface. Vertices are situated according to the
Kamada-Kawai free-energy technique in Pajek software [2]. Vertex size is proportional
to log (d + 3), where d is node degree.

The graph in Figure 4(a) contains 54 vertices after 18 processes occurred (18 micro-
tasks), while that in Figure 4(b) contains 59 vertices after the same number of processes
occurred. The maximum number of processes occurring in a given provenance graph
was 70. Figure 5 gives the distribution of provenance graphs over their maximum pro-
cess index; it indicates that the majority of tasks were edited at least seven times, and
288 graphs were edited twenty times or more.

3 Methods

To compare the 5,128 networks with those described in the literature, and to see whether
the characteristics ascertained from network analysis might be useful, we selected a sub-
set of network properties to investigate. We chose three properties that have been used
elsewhere in the analysis of both real and synthetic graphs [10]. They are as follows:

Degree distribution: For many graphs, the degree distribution follows a ‘power law’
such that the number of vertices Nd with degree d is given by Nd ∝ d−γ , where γ > 0
is usually called the power-law exponent. We shall examine the degree distribution
of an entire provenance graph, and subdivide this into several distributions based
on the four edge types and their directionality. In summarizing the information
in such plots, we refer to γ as the degree-distribution power-law exponent (DPE),
calculated according the method of Clauset et al. [5] concentrating on nodes with
high degree.
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Figure 5. A plot of the number of CollabMap provenance graphs that contained any given number
of processes (micro-tasks).

Diameter: The diameter of a graph is the greatest minimum distance between any two
nodes. Most real-world graphs exhibit relatively small diameter (the “small-world”
phenomenon [12]) which tends to stabilize as the number of vertices in a network
grows over time (here, as processes occur). Since CollabMap nodes are separated
by directed edges, thereby preventing some nodes from forming a path to certain
others, strictly speaking the diameter of each graph is infinite; however, by tempor-
arily assuming the edges are undirected, we are able to calculate a diameter and
we record its value after each process (micro-task) occurs. In addition, we return
to the directed graph to calculate a useful variation on graph diameter: Dijkstra’s
algorithm [6] provides the minimum path length separating each pair of nodes, and
we consider the distribution of the cases in which this path length was a finite num-
ber. This distribution determines the maximum finite distance (which we shall refer
to as MFD) from one node type to another. We calculate the values of MFD on
full provenance graphs as well as on the corresponding data-flow graphs — that is,
graphs with only artefacts and wasDerivedFrom edges, with no processes involved.

Densification: As a network evolves over time, it generally becomes denser. This can
be quantified by comparison of the number of edges to the number of nodes, after
each process occurs. The relation between the number of edges E(t) and the number
of vertices N(t) in an evolving network after process t ordinarily obeys the densi-
fication power law, which states that E(t) ∝ N(t)a for some densification exponent
a typically greater than unity [9]. In our provenance graphs, we have chosen to also
specialize this relation by node type and by edge type, noting Pearson’s product-
momentum correlation coefficient in each case. We refer to each coefficient as the
edge-to-node correlation (ENC).



Our descriptions of the above three properties have indicated that many graphs which
have been studied elsewhere in the literature have a degree distribution following a
power law, have small diameter which stabilizes eventually, and become denser over
time in a manner that follows a power law as well. To summarize, our methodology for
analysing these three properties on each provenance graph results in several plots and
includes the following three metrics: DPE, MFD, and ENC.

4 Results and Discussion

We now present the results from the analyses described in the above section for the
provenance graph depicted in Figure 4(a) and for the largest provenance graph. In ad-
dition, we carried out the same analyses for the whole population of 5,128 provenance
graphs recorded by CollabMap and summarize their results here.

4.1 Degree distribution
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Figure 6. (a) Distribution of node degrees for the typical provenance graph shown in Figure 4(a).
(b) A similar distribution for the largest provenance graph. (c) Degree-distribution power-law
exponent (DPE) for all 5,128 provenance graphs.

Figures 6(a) and (b) plot degree distributions (histograms depicting how many nodes
had a certain number of interconnections) which were typical of those for the proven-
ance graphs under study. The tails (high-degree data) conceivably follow a power law,
although the low-degree data points (here, for node degrees fewer than three) lie below
this trend; this is a pattern observed in many networks elsewhere [15]. The degree-
distribution power-law exponents (DPE) for the data in these two figures were 2.1 and
2.0. Over the 5,128 graphs we examined, the mean DPE was 2.4, with a standard de-
viation of 0.2. In comparison, elsewhere in the literature values tend to fall between
1.4 [15] and 4.3 [5], with the vast majority between 2 and 3 [15]. The full distribution,
given in Figure 6(c), is clearly multi-modal; this is because some of the provenance
graphs under investigation were small, and the calculation of DPE is only reliable for
large graphs. We found that restricting the analysis to graphs with a minimum size of
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Figure 7. Degree distributions according to edge type. As the graphs are logarithmic, zeros cannot
be plotted; the number of nodes corresponding to zero in-degree or zero out-degree were as
follows: (a) 45,194; (b) 5,128; (c) 44,390; (d) 5,157; (e) 34; (f) 0.

40 nodes (recognizing that the maximum number of nodes in a graph was 271) led to
the emergence of a peak near DPE = 2.2. In summary, our graphs tended to follow a
power law, and the values of DPE were in the typical range.

Figure 7 shows the degree distribution specialized according to edge type. This
figure is probably one of the most useful from a provenance point of view. Since we
take into account the directedness of the graph edges in this particular analysis, we can
differentiate between ‘out-degree’ (the number of edges leaving a node; for example,
the out-degree of a process is incremented for each artefact it becomes connected to via
a used edge) and ‘in-degree’ (the number of edges directed towards a node). In each of
the six distributions, the tails can again be well fitted by a power law, with an exponent
(DPE) ranging from 1.9 to 4.1. Specifically, from Table 1 it is apparent that the values
of DPE in the figure are (a) 2.17, (b) 4.11, (c) 1.86, (d) 3.09, (e) 3.02, and (f) 3.32.

Examining degree distributions by edge type leads to more provenance-specific in-
formation, and we highlight some results here. First, examining the number of processes
versus the wasControlledBy out-degree confirms that each process was controlled by
exactly one agent; the plot is not shown since it contained just this one data point (out-
degree 1, number of processes 37,931); in Table 1 it is noted that this case has “No
power law”. Second, examining the number of processes versus the wasGeneratedBy
out-degree confirms that each artefact was generated by exactly one process. Again the
plot need not be shown; here the single data point was out-degree 1, number of artefacts
58,877. This was a gratifying result, as it is always the case in a single account that
an artefact is generated by a single process/activity (more generally, different accounts



may model what happened from different viewpoints, and the same entity may be re-
corded as generated from two different processes in two accounts). This confirmation
would not be pertinent to normal CollabMap users, but it could be of use to developers
wishing to check the accuracy of the implementation of their software. Third, let us
consider the fact that the degree distribution for artefacts is essentially determined by
the number of times an artefact is reused. From the distribution in Figure 7(a), we found
the average in-degree was 0.80, and the conclusion to draw from this is that each arte-
fact was used slightly less than once, on average. Additionally, the range of in-degrees
was 0–35; hence some artefacts were used very heavily while some artefacts were not
used at all. The latter are mostly user votes (over 43,000), which were recorded for data
verification at a later stage and not currently used in any of the micro-tasks. Artefacts
that were used at all were used an average of 3.4 times. Similar analysis applies to the
other plots in Figure 7.

Table 1. Values of the degree-distribution power-law exponent (DPE) for the four types of node
inter-connection, when power laws were observed.

used wasGeneratedBy wasControlledBy wasDerivedFrom
in-degree 2.17 3.02 3.32 1.86
out-degree 3.09 (No power law) (No power law) 4.11

4.2 Graph diameter

Figure 8 plots the evolution of graph diameter (the maximum separation between any
two nodes) as more and more processes occur. It shows that graph diameter tended to
increase quickly for the first few processes before settling to a stable value. Results over
all 5,128 provenance graphs are shown in Figure 9. Growth is rapid until approximately
the seventh process; thenceforth there is a slow, approximately linear increase in graph
diameter. The plots in their entirety are sub-linear. In comparison, in many graphs the
diameter grows approximately logarithmically with the number of nodes [4], which is
of course another sub-linear pattern, and hence qualitative similarities exist. We have
begun to show that the dynamics of provenance graphs bear some resemblance to those
of other networks in the literature.

We have also noted a slight difference, one which is due to the type of expansion
expected of a provenance graph: the number of artefacts in a chain growing with each
process is a complicated function that nonetheless should in many cases contain a small
linear term; this in turn leads to the slightly unusual phenomenon of linear growth after
a certain number of processes occur. More specifically, revisiting the workflow descrip-
tion in Section 2, consider that the provenance graph depicted in Figure 3 (with a dia-
meter of four) has the capacity to expand downwards through, for example, wasRevi-
sionOf edges. If the artefacts downstream are used by processes controlled by agents
who have contributed previously to the task, the diameter will not increase, because
the agents will have high degree and will act as ‘hubs’ keeping all nodes within short
reach of one another. On the other hand, if new agents control the processes using these
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Figure 8. Plot of diameter versus process number for (a) a typical provenance graph, and (b) the
largest provenance graph.

downstream artefacts, there is nothing to prevent graph diameter from growing steadily
as more and more downstream artefacts appear. Therefore, the linear growth observed
in Figure 9 after approximately the seventh process is an indication that, among other
things, a fresh supply of agents is readily available, which is the case for crowdsourcing
applications in particular.

Recall from Section 3 that the path length between a pair of provenance nodes is
measured by the number of directed edges to be traversed in order to travel from one
node to another, and the calculation of most path-length data necessitates first ignor-
ing the node pairs with infinite path length between them. Among the remaining node
pairs, the maximal finite distance (MFD) between any two processes in a graph was
between 1 and 13 edges, inclusive, and the mean was 2.73 edges. The usefulness of
this number becomes apparent only when seen in the context of others — namely, the
distance required to go from an artefact to a process. In the latter case, the MFD was
also 2.73, and hence, the separation statistics were identical in these two cases. This
equality is due to the manner in which the CollabMap provenance graphs were created.
Under the OPM, two processes are not connected directly but are linked via artefacts.
The second process, i.e. the one using the intermediate artefact, will have generated
artefacts of its own; hence these artefacts will be separated from the first process by the
same distance (i.e. two edges) that exists between the two processes. This is particular
to CollabMap, because when an artefact is connected to a process via wasGeneratedBy,
and that process uses a second artefact, there is always a wasDerivedFrom link between
the two artefacts. The motif that results (two edges long) is repeated as the provenance
graph grows, and hence for any CollabMap graph the pair of MFD values described
here are always equal to one another. For example, clearly the values are both 2 for the
small graph depicted in Figure 3. In summary, mean separation data can provide a rapid
indication of how the provenance graph model was established initially by its designer.

Similarly, the MFD between two artefacts in a given CollabMap provenance graph
was found to have a mean of 1.74 edges (range: 1–12), and the same can be said for the
distance required to go from a process to an artefact, and for the distance between two
artefacts in the corresponding ‘data-flow graph’ (see Section 3). Again, the separation
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Figure 9. Evolution of graph diameter with the number of processes (micro-tasks) that have oc-
curred, for up to 5,128 CollabMap provenance graphs. The solid line indicates the mean, and
the shaded region indicates the point-wise range of values. The number of graphs available for
analysis after each process is given in Figure 5.

statistics were identical in these three cases owing to the manner in which the Col-
labMap provenance graphs were created. The rationale is only a slight variation on the
motif described above, and as a specific example of the phenomenon, in the provenance
graph depicted in Figure 3 the MFD between two artefacts and the MFD going from
a process to an artefact are both equal to 1. In an arbitrary provenance graph outside
of the CollabMap project, there may exist a different relationship among the MFDs
rather than equality; hence, this relationship provides another measure characterizing
the design of a provenance graph model. It is necessary to confirm this by repeating the
calculation of MFDs on provenance graphs from other applications.

4.3 Densification

Figures 10(a) and 10(b) are included to show densification — that is, the manner in
which the number of edges increases with the number of nodes as a graph grows over
time. The two logarithmic plots show only minor deviations from the straight line of
a power law, and this pattern was typical among the provenance graphs we examined.
The densification power-law exponents for these two selected provenance graphs were
1.33 and 1.23, respectively. Over all 5,128 graphs, the mean exponent was 1.31 with a
standard deviation of 0.07, and the range was 1.14–1.59. In comparison, the value seen
in other networks is never less than unity in a connected graph [10] and typically falls
between 1.0 and 1.7 [9]. The full distribution, given in Figure 10(c), is multi-modal
as before; however, we found that restricting the analysis to graphs with a minimum
size of 40 led to the emergence of a single peak around 1.3. This peak is close to, for
example, the value of 1.26 reported by Leskovec et al. [8,9] for a person-to-person re-
commendation network built from data provided by an online retailer, in which nodes
represent users and edges represent recommendations (each time a user purchased a
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Figure 10. (a) A plot of the number of edges versus the number of nodes in the provenance
graph depicted in Figure 4(a), as it grows. (b) A similar plot for the largest provenance graph.
(c) A histogram of the densification exponent a, which is a factor influencing the edge-to-node
correlation (ENC), over all 5,128 provenance graphs.

product, they were given the option to send emails recommending the item to friends).
More generally, that our results fit in the typical range of 1.0 to 1.7 suggests that proven-
ance graphs grow in a manner that has similarities with other graphs. In addition, the
observed standard deviation (0.07) was relatively small, which is related to the fact that
the provenance graphs grew in a structured manner with each micro-task.

We turn to the values of edge-to-node correlation (ENC), which reflect the densi-
fication pattern for particular edge types versus particular node types. Table 2 describes
the ENC values among the three node types and the four edge types. In all twelve cases,
high values of ENC were observed, which explains the very good line of fit in Fig-
ures 10(a) and 10(b). Additionally, there is a deterministic, precisely linear relationship
between the number of artefacts and the number of wasGeneratedBy edges, or between
the number of processes and the number of wasControlledBy edges, leading to ENC=1
in either case. This meets with intuition, as each process in CollabMap is linked exactly
once to an agent, and (as stated previously) each artefact is generated by exactly one
process.

Table 2. Edge-to-node correlation (ENC) coefficients between the number of edges and the num-
ber of nodes in a growing graph, averaged over the 5,128 tasks. The three node types are listed
on the left and the four edge types are at the top.

used wasGeneratedBy wasControlledBy wasDerivedFrom
artefact 0.9888 1.0000 0.9929 0.9990
process 0.9948 0.9929 1.0000 0.9894
agent 0.9707 0.9809 0.9807 0.9771



5 Conclusion

In the course of analysing data from a crowdsourcing application, we have highlighted
several graph-theoretic metrics to characterize provenance graphs, including DPE, MFD,
and ENC. Our first key finding is that CollabMap provenance data possess character-
istics similar to those existing in other graphs studied in the literature, including social
networks and the World Wide Web [10]. Our second key finding is that our data set
is amenable to tools more specific to provenance: our metrics can be used to compare
and classify provenance graphs, to help quickly confirm that provenance was recorded
properly, and so on.

The first key finding is important because the similarities we have identified indic-
ate that provenance graphs represent a suitable area of exploitation for network analysis
tools concerned with modelling, prediction, and inference which exist already in the lit-
erature [7]. For example, since the mid-2000s interest has been growing in ‘community
detection’ — that is, identifying groups of nodes that are more densely linked to each
other than to the rest of the network. Users in CollabMap (represented as agent nodes)
should not form such communities since tasks are assigned at random, and therefore
to the extent that community structure is discerned a pathological case is likely. As an
example of such a case, CollabMap users have the option to forgo a task and move
on to another, thereby allowing them to focus on particular types of task if desired;
hence a group of users could agree among themselves to each skip tasks until they re-
cognized a building or buildings of common interest (for example, in a neighbourhood
they disliked). The user group could then corroborate each others’ bogus building evac-
uation routes. Community-detection algorithms such as those based on non-negative
matrix factorization [16] could help to alert CollabMap designers to inappopriate levels
of community structure within the provenance graph, and thus identify and prevent ill-
intentioned collaboration among users. As another example, elsewhere we are in the
course of developing a link-inference algorithm based on our results here, to assist with
the analysis of incomplete provenance graphs.

The second key finding is important because the set of provenance-specific meas-
ures from network analysis so far is useful in its own right, in verification and classi-
fication, for example. We have shown how degree distributions can be used to confirm
provenance graphs were constructed properly, and the plots in Figure 7 illustrate how
further properties in a provenance database can be summarized. Other characteristics
we have calculated are the maximum path lengths separating given types of nodes, and
densification information. In all of the above, the analysis could have been performed
on provenance graphs one at a time rather than on an entire database; a useful ap-
plication of doing so would be to assist the principled comparison of one provenance
graph with another. For example, insofar as our metrics are related to completeness
and error probability, they can be used in the process of automated verification of the
crowdsourced evacuation routes (e.g. confirming that the editing processes were likely
to reduce errors acceptably). In machine-learning terminology, the metrics represent the
result of ‘feature extraction’ and as such they have the potential to help learn the dif-
ferences between high-error graphs and low-error graphs. In general the metrics are of
potential use in future software applications which aim to classify tasks based on their
provenance graphs.
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