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1. INTRODUCTION

After outlining the theory behind the author's aygmh to tachograms and spectral analysis, HRV
calculated using the Lomb periodogram will be coradao HRV determined via time-frequency analysis.
This report will seem brief in parts; this was deaéeep the page count low.

2. FUNDAMENTALS
2.1 Tachograms

The purpose of a tachogram (from the Grieathos speed) is to quantify changes in heart rate skiert
time periods, ordinarily less than one day. Tylycéhe heart's rate of contraction is sampledeoper
beat (and hence unevenly in time), being takehagtverse of the interval which occurs between
consecutive QRS complexes (known as an RR inten&ihce the Fourier transform algorithm requires
even sampling, the tachogram is often re-sampled)uisterpolation. However, this approach introgsic
new problems: for example, linear interpolatioma igoor approximation, and cubic splines create
unacceptable oscillations when one RR intervahissually longer than its predecessor. Perhaps more
importantly for cross-correlation with other sigaaduch as instantaneous blood pressure, the grotes
assigning the RR interval to one end of that irgkgither at the beginning or end) creates a tgieo out
of phase with the true heart rate.

There does exist a logical alternative to unevenpdiag followed by interpolation. Berget al.[1]
developed a beautifully simple algorithm which sésphe heart rate directly but evenly, so no later
interpolation is required (see Figure 1). As dealdn Figures 2 and 3, this algorithm surpasségcu
spline interpolation on the issues of spuriousliagitins and incorrect phase. This is the methogdleyed
by the author to prepare tachograms for real patiata, the subject of a future report.

A second strategy to avoid the drawbacks of intatmn is to compute the Fourier spectrum direfriiyn

the unevenly sampled tachogram. The Lomb periaings an excellent candidate for this operation,
since it weights the data on a point-by-point beaiser than on a per-interval basis. It has lsenvn that
the Lomb periodogram can provide a more accurdimate of a tachogram's power spectral density (PSD
than interpolation followed by a regular Fouriaarsform [2]. However, the author is not awarerof a
effort to combine this valuable method with timeguency analysis (see Section 2.2).

2.2 Obtaining a Spectrum Using Time-Frequency Analysis
The researcher processing non-stationary signalsiaay time-frequency methods from which to choose.

For example, developed for quantum mechanics byn@fifg] and introduced to signal processing fifteen
years later by Ville [4], the Wigner-Ville distrition is defined by:
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Figure 1: Bergeret al.'s algorithm. (a) A segment of an ECG (electrocardiogram) sigfi@l.The heart
rate samples corresponding to the ECG signal in dajermined using Berget als algorithm. The
fraction (often less than unity) of RR intervalshivi the local window centred atis a/b, and at { is b/k
+ c¢/l4. The value of the heart rate at each sample psitaken to be the number of intervals that fell
within the local window centred at that point diedlby the width of the window. This calculation is
performed at each point in (b), i.e., four moredsbetween tand ¢. [1]
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Figure 2: Heart rate phase.(Synthetic data.) Berget al's algorithm produces a tachogram (black) in
phase with heart rate. Cubic splines (red and maagjewill always be out of phase, owing to the
limitations of the initial uneven sampling. (Inawen sampling, "RR-intervals" are assigned at thiats
where heart beats occur, and the values of thasevials are marked as blue x’s in the diagramt.j)s |
tempting to consider averaging the two cubic sgiresults, which would together produce a smoath pl
in phase with heart rate — provided the problemniified in Figure 3 could be conquered.
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where f denotes complex conjugation. This equation preia representation of a function f(t) in the
joint time-frequency domain, and is indeed onéhefmnost popular time-frequency analysis methods for
biological signals. Discussion of alternativesl widt be covered in this document.

The above equation is seldom used in its pure farrd,the Smoothed Pseudo Wigner-Ville Distribution
(SPWVD) is employed instead. THescreteform of the SPWVD is given as:
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Here, h(k) and g(p) represent frequency and timeoshing, respectively. The advantage of smootisng
the removal of spurious cross-terms; in fact, spéatterference is so high with the pure Wignehe/i
distribution that it precludes implementation insheeal applications [5].
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Figure 3: Heart rate changes during carotid sinusassage.(Real data.) In this patient, carotid sinus
massage triggered a four-second asystole. Onleedfito cubic splines methods failed to track heate,
becoming negative for several data points. (In,féidteart rate ever reaches zero, the patient rbestiead
since the next beat will not occur until infinitene passes.) In contrast, Bergarals algorithm produced
an accurate heart rate of about 0.25 beats persécdince a 3-second asystole is one of the @ifer a
carotid sinus hypersensitivity diagnosis, a thrddhad 0.333 beats per second could be used if saces



The Wigner spectrum of stationary signals is sinthb/classical spectrum; clearly no advantage i®to
gained in this case. Where SPWVD is truly valuable the analysis of signals whose spectra vary
rapidly with time. Short-time Fourier transforn®TFTs) cannot accurately track changes in a signal'
spectrum that occur over the course of a few segomlich is a significant limitation for many bigjical
signals. For example, the human nervous and casimilar systems are adept at modifying blood
pressure and cardiac contraction behaviour intlems a few heart beats. An STFT with a 60-second
moving window clearly misses such changes.

3.HRV FROM THE LOMB PERIODOGRAM

An artificial tachogram was generated with thedwling characteristics, where LF and HF are
abbreviations for low and high frequency respedtjive

- Length of 512 seconds, with a mean heart rate dfe@s per minute

- A sampling rate of 2 Hz (i.e., uneven sampling wager employed)

- No ectopic beats or artefacts

- Astrong LF component concentrated in a 0.04-Hzlb=entred on 0.1 Hz

- A strong HF component concentrated in a 0.04-Hzdlzamtred on 0.25 Hz

- The frequency smearing over each 0.04-Hz band alis\eed by linearly modulating the LF and
HF frequencies; hence, the signal was-stationary

In summary, the equation for this tachogram is il
HR =60 + A sin (w t) + Ay sin (w t)
wherew, = 0.08 + 0.04t/512y, = 0.23 + 0.04t/5124 = 0.1 andA, = 0.08.
The Lomb periodogram of this artificial tachograratohes the FFT (Fast Fourier Transform) spectrum
(Figure 4). This is to be expected, for the Lormgbation reduces to a regular FFT process in the cfis

even sampling. Frequency-domain HRV was calculatethe central 256 seconds of the graph, using
bounds of 0.04-0.15 Hz for LF and 0.15-0.40 HzHér. The result was was an LF/HF ratio of 1.56.

4. HRV FROM THE SPWVD

The tachogram used in Section 3 was next analystteitime-frequency domain using the SPWVD. The
frequency modulation is readily apparent in FigbhiréSumming the LF and HF contributions in the
frequency axis led to an LF/HF ratio of 1.49. kastely, this is within 5% of the value obtainethgsthe
Lomb periodogram. Moreover, when this sort of camagive analysis was repeated for different
tachograms, the SPWVD was found to perform contistevell (Table 1).

Tachogram parameters Results
LF range (Hz) | HF range (Hz Ay AL Lomb SPWVD Per cent
LF/HF LF/HF deviation
0.09-0.13 0.21-0.25 0.67 2.17 2.14 1.2%
0.08-0.12 0.23-0.27 0.8 1.56 1.49 4.5%
0.06-0.14 0.16-0.24 0.95 1.10 1.10 0.6%
0.08-0.12 0.28-0.32 1.1 0.821 0.801 2.4%
0.06-0.12 0.27-0.33 1.3 0.593 0.580 1.0%

Table 1:Deviation of SPWVD LF/HF ratio from the classica¢thod, for various artificial tachograms.
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Figure 4: (a) The FFT (Fast Fourier Transform) of the artifici@chogram being analysedb) The Lomb
periodogram is identical. The three vertical limaark the boundaries of the LF and HF regions.
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Figure 5: SPWVD of an artificial tachogram. Note how theéo frequency rises with time and the higher
frequency decreases with time; this is the frequencdulation intentionally imposed on the signal.

5. DISCUSSION

It was shown that, on artificial data, the SPWVD calculate LF/HF ratios as accurately as the idaks
method of doing so. The SPWVD is better than ST&Tteacking simple frequency components; for
example, a linear chirp signal reduces to a swingronecker delta functions in the time-frequeptane
(not shown here). The applicability of thjgeof precision is yet to be tested fully on patidata. A
report summarizing these efforts will follow soon.
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